ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Physics. Mathematics
Interpolation classes, operator and matrix monotone functions; pp. 141–145
PDF | https://doi.org/10.3176/phys.math.2006.3.02

Authors
Yacin Ameur, Sten Kaijser, Sergei Silvestrov
Abstract

Connections between interpolation spaces, Pick functions, and matrix monotone functions are investigated. Characterizations, inclusion results, open problems, and conjectures on these function classes and their interrelations are presented.

References

1. Donoghue, W. Monotone Matrix Functions and Analytic Continuation. Springer, 1974. 
https://doi.org/10.1007/978-3-642-65755-9

2. Löwner, K. Über monotone Matrixfunktionen. Math. Z., 1934, 38, 177–216. 
https://doi.org/10.1007/BF01170633

3. Donoghue, W. The interpolation of quadratic norms. Acta Math., 1967, 118, 251–270. 
https://doi.org/10.1007/BF02392483

4. Ameur, Y. A new proof of Donoghue’s interpolation theorem. J. Funct. Spaces Appl., 2004, 3, 253–265. 
https://doi.org/10.1155/2004/814683

5. Foiaş C. and Lions, J. L. Sur certains theoremes d’interpolation. Acta Sci. Math., 1961, 22, 269–282. 

6. Donoghue, W. The theorems of Loewner and Pick. Israel J. Math., 1966, 4, 153–170. 
https://doi.org/10.1007/BF02760074

7. Peetre, J. On interpolation functions I–III. Acta Szeged, 1966, 27, 167–171; 1968, 29, 91–92; 1969, 30, 235–239.

8. Foiaş C., Ong, S. C. and Rosenthal, P. An interpolation theorem and operator ranges. Integral Equations Operator Theory, 1987, 10, 802–811.
https://doi.org/10.1007/BF01196120

9. Ameur, Y. The Calderón problem for Hilbert couples. Ark. Mat., 2003, 41, 203–231. 
https://doi.org/10.1007/BF02390812

10. Sparr, G. A new proof of Löwner’s theorem on monotone matrix functions. Math Scand., 1980, 47, 266–274.
https://doi.org/10.7146/math.scand.a-11889

11. Tsehaye, T. K. and Araaya, K. The Meixner–Pollaczek polynomials and a system of orthogonal polynomials in a strip. J. Comput. Appl. Math., 2004, 170, 241–254. 
https://doi.org/10.1016/j.cam.2004.01.039

12. Hansen, F., Ji, G. and Tomiyama, J. Gaps between classes of matrix monotone functions. Bull. London Math. Soc., 2004, 36, 53–58.
https://doi.org/10.1112/S0024609303002455

13. Osaka, H., Silvestrov, S. D. and Tomiyama, J. Monotone operator functions, gaps and power moment problem. Preprint in arXiv.org: math.OA/0606421, to appear in Math. Scand. 

14. Osaka, H., Silvestrov, S. D. and Tomiyama, J. Monotone operator functions on C∗- algebras. Internat. J. Math., 2005, 16, 181–196. 
https://doi.org/10.1142/S0129167X05002813

15. Hansen, F. and Pedersen, G. K. Jensen’s inequality for operators and Löwner’s theorem. Math. Ann., 1982, 258, 229–241. 
https://doi.org/10.1007/BF01450679

16. Ameur, Y., Kaijser, S. and Silvestrov, S. Interpolation functions on unital C∗-algebras. Preprints in Mathematical Sciences, 2005, 14, LUFTMA-5059-2005, Centre for Mathematical Sciences, Lund University. 

Back to Issue

Back issues