In optical tensor field tomography either the dielectric tensor or the stress tensor has to be determined. In experiments either interferometric measurement of the absolute optical retarda- tions or comparatively simple measurement of the relative optical retardations can be used. The paper analyses main differences of tomographic algorithms for the dielectric and stress tensor fields for both methods of optical measurements. It also shows that a recently published algorithm for tomographic measurement of the dielectric tensor field is wrong in principle.
1. Herman, C. T. Image Reconstruction from Projections. Academic Press, New York, 1980.
https://doi.org/10.1007/3-540-09417-2
2. Kak, C. A. and Slaney, M. Principles of Computerized Tomography. IEEE Press, New York, 1988.
3. Aben, H., Idnurm, S. and Puro, A. Integrated photoelasticity in case of weak birefringence. In Proceedings of 9th International Conference on Experimental Mechanics, V ol. 2. Copenhagen, 1990, 867–876.
4. Sharafutdinov, V. A. Integral Geometry of Tensor Fields. VSP, Utrecht, The Netherlands, 1994.
https://doi.org/10.1515/9783110900095
5. Pikalov, V. V. and Melnikova, T. S. Tomography of Plasmas. Nauka SO, Novosibirsk, 1995 (in Russian).
6. Hertz, H. M. Kerr effect tomography for nonintrusive spatially resolved measurements of asymmetric electric field distributions. Appl. Opt., 1986, 25, 914–921.
https://doi.org/10.1364/AO.25.000914
7. Aben, H. K. Kerr effect tomography for general axisymmetric field. Appl. Opt., 1987, 26, 2921–2924.
https://doi.org/10.1364/AO.26.002921
8. Kuske, A. and Robertson, G. Photoelastic Stress Analysis. J. Wiley, London, 1974. 9. Aben, H. and Guillemet, C. Photoelasticity of Glass. Springer, Berlin, 1993.
10. Aben, H. Optical phenomena in photoelastic models by the rotation of principal axes. Exp. Mech., 1966, 6, 13–22.
https://doi.org/10.1007/BF02327109
11. Aben, H. Integrated Photoelasticity. McGraw-Hill, New York, 1979.
12. Aben, H. Characteristic directions in optics of twisted birefringent media. J. Opt. Soc. Am. A, 1986, 3, 1414–1421.
https://doi.org/10.1364/JOSAA.3.001414
13. Mangal, S. K. and Ramesh, K. Determination of characteristic parameters in integrated photo-elasticity by phase-shifting technique. Opt. Lasers Eng., 1999, 31, 263–278.
https://doi.org/10.1016/S0143-8166(99)00027-5
14. Tomlinson, R. A. and Patterson, E. A. The use of phase-stepping for the measurement of characteristic parameters in integrated photoelasticity. Exp. Mech., 2002, 42, 43–50.
https://doi.org/10.1007/BF02411050
15. Kubo, H. and Nagata, R. Determination of dielectric tensor fields in weakly inhomogeneous anisotropic media. J. Opt. Soc. Am., 1979, 69, 604–610.
https://doi.org/10.1364/JOSA.69.000604
16. Andrienko, Y. A. and Dubovikov, M. S. Optical tomography of tensor fields: the general case. J. Opt. Soc. Am. A, 1994, 11, 1628–1631.
https://doi.org/10.1364/JOSAA.11.001628
17. Berezhna, S. Yu., Berezhnyi, I. V. and Vlokh, O. G. Optical tomography of anisotropic inhomogeneous medium. In Proceedings of 10th International Conference on Experimental Mechanics, Vol. 1. Lisbon, 1994. Balkema, Rotterdam, 431–435.
18. Wijerathne, M. L. L., Oguni, K. and Hori, M. Tensor field tomography based on 3D photo-elasticity. Mech. Materials, 2002, 34, 533–545.
https://doi.org/10.1016/S0167-6636(02)00155-2
19. Puro, A. E. On tomographic magnetophotoelasticity. Optics. Spectrosc., 1996, 81, 119–125.
20. Aben, H., Idnurm, S., Josepson, J., Kell, K.-J. and Puro, A. Optical tomography of the stress tensor field. In Analytical Methods for Optical Tomography (Levin, G. G., ed.), Proc. SPIE, 1991, 1843, 220–229.
https://doi.org/10.1117/12.131894
21. Schupp, D. Optische Tensortomographie zur Bestimmung räumlicher Spannungs-verteilungen. Tech. Mess., 1999, 66, 54–60.
https://doi.org/10.1524/teme.1999.66.2.54
22. Schupp, D. Optische Tensortomographie zur Untersuchung räumlicher Spannungsverteilungen. Fortschritt – Berichte VDI, Reihe 8, 2000, 858.
23. Kubo, H. and Nagata, R. Determination of dielectric tensor fields in weakly inhomogeneous anisotropic media. II. J. Opt. Soc. Am., 1981, 71, 327–333.
https://doi.org/10.1364/JOSA.71.000327
24. Kubo, H. Approach to dielectric tensor slice-type tomography. J. Opt. Soc. Am. A, 1997, 14, 2299–2313.
https://doi.org/10.1364/JOSAA.14.002299
25. Aben, H. K. and Josepson, J. On the investigation of axisymmetric dielectric tensor fields by integrated photoelasticity. In Photoelasticity in Engineering Practice (Paipetis, S. A. and Holister, G. S., eds). Elsevier Applied Science Publishers, London, 1985, 103–132.
26. Hammer, H. and Lionheart, R. B. Reconstruction of spatially inhomogeneous dielectric tensors through optical tomography. J. Opt. Soc. Am. A, 2005, 22, 250–255.
https://doi.org/10.1364/JOSAA.22.000250
27. Abe, T., Mitsunaga, Y. and Koga, H. Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers. J. Opt. Soc. Am. A, 1986, 3, 133– 138.
https://doi.org/10.1364/JOSAA.3.000133
28. Puro, A. E. and Kell, K.-J. E. Complete determination of stress in fiber preforms of arbitrary cross-section. J. Lightwave Technol., 1992, 10, 1010–1014.
https://doi.org/10.1109/50.156839
29. Park, Y., Paek, U. and Kim, D. Y. Complete determination of the stress tensor of a polarization- maintaining fiber by photoelastic tomography. Opt. Lett., 2002,27, 1217–1219.
https://doi.org/10.1364/OL.27.001217
30. Gorazdovskij, T. Yu., Vainberg, E. I. and Faingoiz, M. L. Investigation of 3D stress-strain fields with X-ray computer tomography. In Proceedings of 2nd All-Union Symposium on Computerized Tomography. Kujbyshev, 1985, 46 (in Russian).
31. Sharafutdinov, V. On integrated photoelasticity in case of weak birefringence. Proc. Estonian Acad. Sci. Phys. Math., 1989, 38, 379–389 (in Russian).
32. Cheng, Y. F. Stress at notch root of shafts under axially symmetric loading. Exp. Mech., 1970, 10, 534–576.
https://doi.org/10.1007/BF02320617
33. Aben, H., Errapart, A., Ainola, L. and Anton, J. Photoelastic tomography for residual stress measurement in glass. Opt. Eng., 2005, 44, 093601.
https://doi.org/10.1117/1.2047368
34. Aben, H., Ainola, L. and Anton, J. Half-fringe phase-stepping with separation of the principal stress directions. Proc. Estonian Acad. Sci. Eng., 1999, 5, 198–211.
35. Cormack, A. M. Representation of a function by its line integrals, with radiological applica- tions. J. Appl. Phys., 1963, 34, 2722–2727.
https://doi.org/10.1063/1.1729798