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Abstract. In optical tensor field tomography either the dielectric tensor or the stress tensor has to 
be determined. In experiments either interferometric measurement of the absolute optical retarda-
tions or comparatively simple measurement of the relative optical retardations can be used. The 
paper analyses main differences of tomographic algorithms for the dielectric and stress tensor fields 
for both methods of optical measurements. It also shows that a recently published algorithm for 
tomographic measurement of the dielectric tensor field is wrong in principle. 
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1. INTRODUCTION

Tomography is a powerful method for the analysis of the internal structure of 
different objects, from human bodies to parts of atomic reactors [1–3]. In 
tomography a certain radiation (X-rays, protons, acoustic waves, light, etc.) is 
passed through a section of the object in many directions, and properties of the 
radiation after it has passed the object (intensity, phase, deflection, etc.) are 
measured on many rays. Experimental data ( , )g l θ  for different values of the 
angle θ  (Fig. 1) are called projections. 

If ( , )f r ϕ  is the function, which determines the distribution of a certain 
parameter of the field, experimental data for a real pair ,l θ  can be expressed by 
the Radon transform of the field 

( , ) ( , )d .g l f r zθ ϕ
∞

−∞

= ∫            (1.1) 
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Fig. 1. Schema of tomographic measurements. 
 
 
When projections for many values of θ  have been recorded, the function 

( , )f r ϕ  is determined from the Radon inversion: 
 

2
0

1 ( , ) d
( , ) d .

cos( )2

E

E

g l l
f r

l r l

π θϕ θ
θ ϕπ −

∂=
∂ − −∫ ∫                    (1.2) 

 
Many numerical algorithms for solving Eq. (1.2) have been elaborated [1,2]. 

The question arises whether it is possible to determine tomographically also 
tensor fields in 3D objects. This problem is not trivial for the following reason. 
Classical tomography considers only determination of scalar fields, i.e., every 
point of the field is characterized by a single number (the coefficient of attenua-
tion of the X-rays, acoustic or optical index of refraction, etc.). Since stress is a 
tensor, in stress field tomography every point of the field is characterized by six 
numbers. Thus the problem is much more complicated in principle, since Radon 
inversion for the tensor field does not exist. Let us mention that while about one 
hundred books are devoted to scalar field tomography, only one book, written by 
Sharafutdinov [4], deals with mathematical problems of tensor field tomography. 

In science and engineering it is often necessary to determine tensor fields in 
3D objects. For example, measurement of the dielectric tensor field is important 
in investigating plasma jets [5] and measuring the Kerr effect caused by an 
electric field [6,7]. Stresses in 3D transparent objects are characterized by a stress 
tensor field. Determination of the stress tensor field is important for designing 
constructions using photoelasticity and for measuring residual stress in glass [8,9]. 

In the case of a scalar field the influence of a point of the field on the passing 
radiation does not depend on the direction of the radiation, since geometrically a 
scalar is represented by a sphere. For example, the extinction coefficient of the 
X-rays does not depend on the direction in which the X-rays pass the material. 

A tensor is geometrically described by an ellipsoid with three different 
principal components 1 2 3( , , )ε ε ε  and their  directions  (Fig. 2).  In  optical tensor  
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Fig. 2. Dielectric ellipsoid. 
 
 

field tomography usually polarized radiation is used. Polarization of the radiation 
is influenced by the components of the dielectric tensor, which are located in the 
plane perpendicular to the direction of the radiation. For example, for radiation 
direction 1x  polarization is influenced by the components 2ε  and 3ε  of the 
dielectric tensor, for radiation direction 2x  by the components 1ε  and 3,ε  etc. If 
the radiation passes through the section 1 2x x  obliquely along the direction ,sα  
polarization is influenced (Fig. 2) by the components 3ε  and 
 

2 2
1 2cos sinαε ε α ε α= + .                                  (1.3) 

 
The section of the dielectric ellipsoid that is formed by the plane perpendicular 

to an arbitrary ray z  (Fig. 3) is an ellipse. This ellipse can be optically 
characterized by the components 11,ε  22ε , and 12ε  of the dielectric tensor. The 
axes of the ellipse are called quasiprincipal axes and they form an angle ϕ  with the 
x  axis. Quasiprincipal values of the dielectric tensor in the xy  plane, 11ε ′  and 22 ,ε ′  
together with the angle ,ϕ  determine also the influence of the point of the tensor 
field on the passing radiation in the direction of 3x z=  (Fig. 3). 

One of the key problems in tensor field tomography is caused by the fact that 
in the general case the quasiprincipal directions of birefringence are not constant 
but rotate on the light ray. That is, ϕ  is a function of .z  Thus the question arises 
as to what can be measured in optical tensor field tomography and how the 
measurement data are related to the parameters of the tensor field. To elucidate 
this problem, we have to recall some principal postulates of the optics of twisted 
anisotropic optical media [10–12]. 
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Fig. 3. The polarization of light is influenced by the components of the dielectric tensor which lie 

in the xy  plane, perpendicular to the wave normal .z  

 
 

2. INTEGRATED  PHOTOELASTICITY 

2.1. The  general  case 
 
In integrated photoelasticity [11] a transparent 3D specimen is placed in an 

immersion tank, and a beam of polarized light is passed through the specimen. 
The transformation of the polarization of the light is measured on many light rays 
and for many azimuths of the light beam. The measurement data are related to 
the stress field in a complicated way. 

The propagation of polarized light in the direction of the z  axis through a 3D 
inhomogeneous birefringent medium is governed by the following equations [11]: 
 

1
11 22 1 12 2

d 1
( ) ,

d 2

E
i C E iC E

z
σ σ τ= − − −                            (2.1) 

 

2
12 1 11 22 2

d 1
( ) ,

d 2

E
iC E i C E

z
τ σ σ= − + −                            (2.2) 

 
where 1E  and 2E  denote components of the electric vector along the 1x  and 2x  
axes, C  is the photoelastic constant, and 11,σ  22 ,σ  and 12τ  are components of 
the stress tensor in the 1 2x x  plane. The solution of Eqs (2.1) and (2.2) can be 
expressed as [11] 

 

*

*

1 10

202

,
E E

U
EE

   
=       

                                         (2.3) 

 
where 10 ,E  20E  are the components of the incident light vector and 

*1 ,E  
*2E  

describe polarization of the light that emerges from the specimen. The matrix U  
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is a two-by-two unitary unimodular matrix, which in the general case can be 
written as 

 

cos sin
,

sin cos

i i

i i

e e
U

e e

ξ ζ

ζ ξ

θ θ
θ θ− −

 
=   − 

                                  (2.4) 

 

where ,ξ  ,ζ  and θ  are functions of the stress distribution between the points of 
entrance and emergence of the light. 

Analysis of the transformation matrix (2.4) has shown that there always exist 
two perpendicular directions of the polarizer at which the light emerging from the 
medium is linearly polarized. The directions of polarization of the incident and 
emerging light are called the primary and secondary characteristic directions [10,11] 
and are determined through the angles 0α  and *α  as follows: 

 

0 2 2

sin ( )sin 2
tan 2 ,

sin 2 cos sin 2 sin

ζ ξ θα
ξ θ ζ θ

+=
−

                           (2.5) 

 

* 2 2

sin ( )sin 2
tan 2 .

sin 2 cos sin 2 sin

ζ ξ θα
ξ θ ζ θ

−=
+

                            (2.6) 

 

Due to their exceptional physical properties, the characteristic directions can be 
measured experimentally [11,13,14]. It is also possible to measure the characteristic 
optical retardation ∗∆  between the secondary characteristic vibrations: 

 

2 2cos cos2 cos cos2 sin .ξ θ ζ θ∗∆ = +                          (2.7) 
 

If the characteristic parameters 0 ,α  ,α∗  and ∗∆  are determined experimentally 
on a light ray, it is possible to calculate the parameters ,ξ  ,ζ  and θ  of the 
transformation matrix :U  

 

0 * *

0 *

cos ( )
tan tan ,

cos( ) 2

α αξ
α α

+ ∆=
−

                                (2.8) 

 

0 * *

0 *

sin ( )
tan tan ,

sin ( ) 2

α αζ
α α

+ ∆=
−

                                 (2.9) 

 

0 * 0 *

cos sin
tan tan ( ) tan ( ).

cos sin

ξ ξθ α α α α
ζ ζ

= − = +                    (2.10) 

 

Since the parameters ,ξ  ,ζ  and θ  are determined in a nonlinear way by the 
stress distribution on the ray, in the general case the inverse problem of 
integrated photoelasticity is very complicated. 

The parameters ,ξ  ,ζ  and θ  of the transformation matrix can be calculated 
from the experimentally measured characteristic parameters 0 ,α  ,α∗  and ∗∆  
using Eqs (2.8)–(2.10). The circumstance that ,ξ  ,ζ  and θ  depend on the stress 
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distribution along the light ray opens, at least in principle, a possibility of 
determining the 3D stress field tomographically. Such an algorithm may be 
called nonlinear tensor field tomography, because the basic equations (2.8)–
(2.10) are nonlinear. This is a principal difference from classical tomography, 
which may be called linear tomography, since it is based on line integrals (1.1) of 
the field. 

With Eqs (2.1) and (2.2) we have formulated the problem of light propagation 
in the stress tensor field. If the reason for optical birefringence is not known, the 
problem can be formulated for the dielectric tensor field. In this case Eqs (2.1) 
and (2.2) are written as [11] 

 

1
11 22 1 12 2

d 1
( ) ,

d 2

E
i C E iC E

z
ε ε ε′ ′= − − −                          (2.11) 

 

2
12 1 11 22 2

d 1
( ) .

d 2

E
iC E i C E

z
ε ε ε′ ′= − + −                           (2.12) 

 

Let us mention that the matrix U  in Eq. (2.3) is unitary and unimodular only 
if in the coefficients of Eqs (2.1) and (2.2) or (2.11) and (2.12) there appear only 
differences of the normal components of the stress tensor 11 22( )σ σ−  or of the 
dielectric tensor 11 22( ).ε ε−  

Nonlinear photoelastic tomography has been considered by several 
authors [15–19]. In these papers the tomographic method is mostly described only 
verbally. Neither numerical nor physical experiments have been carried out to 
test the validity of the suggested algorithms. Thus, elaboration of photoelastic 
tomography on the basis of nonlinear relationships of integrated photoelasticity 
has not been successful up to now. 

 
2.2. Linear  approximation 

 
Equations (2.1) and (2.2) can be written in the matrix form as 

 

d
.

d

E
AE

z
=                                               (2.13) 

 

Expanding the solution of Eq. (2.13) into Neumann series [20], we obtain 
 

1

0 0 0

1 1 1 1 2 2(z )d d ( ) d ( ) ...
zz z

z z z

U I A z z A z z A z= + + +∫ ∫ ∫                   (2.14) 

 

In linear approximation we have 
 

0

(z)d .
z

z

U I A z= + ∫                                       (2.15) 
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It follows that in linear approximation an inhomogeneous birefringent 
medium can be considered as a birefringent plate 0( ).α α α∗= =  It is possible to 
measure the parameter of the isoclinic α  and the integrated relative optical 
retardation ,∗∆  which are expressed through the integrals of the components of 
the stress tensor [20]: 

 

0

11 22cos2 ( )d ,
z

z

C zα σ σ∗∆ = −∫                                (2.16) 

 

0

12sin 2 2 d .
z

z

C zα τ∗∆ = ∫                                        (2.17) 

 
 

3. TWO  OPTICAL  MEASUREMENT  METHODS 
 
In passing polarized light through optically anisotropic objects two measure-

ment methods can be applied [8]: (1) measurement of absolute optical retarda-
tions with an interferometer or (2) measurement of relative optical retardations 
between light vibrations along principal birefringence axes with a polariscope. 
To explain the principal difference between these methods, let us consider a most 
simple case, a dielectric medium with constant principal axes (Fig. 2). 

By interferometric measurements, if polarized light is passed through the 
medium in the direction 3x  and the plane of light vibrations is parallel to 1,x  
absolute optical retardation abs

1∆  can be measured: 
 

abs
1 1 3d ,C xε′′∆ = ∫                                            (3.1) 

 

where C ′′  is a constant that depends on the wavelength. 
If the plane of vibration is parallel to 2 ,x  we have 

 

abs
2 2 3d .C xε′′∆ = ∫                                           (3.2) 

 

Passing light through the medium in the direction of 1x  with the plane of 
vibration 3,x  we obtain 

 

abs
3 3 1d .C xε′′∆ = ∫                                            (3.3) 

 

Thus, integrals of the components of the dielectric tensor can be obtained by 
interferometric measurements. These data may be used as a basis for tomo-
graphic algorithms. If the birefringence is caused by the photoelastic effect, in 
Eqs (3.1)–(3.3) we have to replace jε  by components of the stress tensor .jσ  
Absolute optical retardations can be measured with interferometers. 

Photoelastic measurements are carried out mostly with polariscopes, which 
usually contain polaroids and quarter-wave plates [8,13,14]. Polariscopes permit 
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measuring the parameters of the polarization ellipse. These parameters depend 
only on the ratio of vibration amplitudes along the principal birefringence axes 
and on the relative optical retardation between these vibrations. The theory of 
integrated photoelasticity has been developed assuming that only relative optical 
retardations are measured [10,11]. 

Using standard polariscopes, in the same dielectric medium (Fig. 2) the 
following integrals can be measured: 

 

12 1 2 3 23 2 3 1 31 3 1 2( )d ,  ( )d , ( )d ,C x C x C xε ε ε ε ε ε′′ ′′ ′′∆ = − ∆ = − ∆ = −∫ ∫ ∫      (3.4) 
 

or 
 

12 1 2 3 23 2 3 1 31 3 1 2( )d , ( )d , ( )d .C x C x C xσ σ σ σ σ σ′ ′ ′∆ = − ∆ = − ∆ = −∫ ∫ ∫     (3.5) 
 

If light passes the medium in the direction of ,sα  we have 
 

3( )d .C sα α αε ε′′∆ = −∫                                       (3.6) 
 

Thus no information about single components of the dielectric tensor can be 
obtained. 

When developing the theory of characteristic directions on the basis of 
Eqs (2.1) and (2.2) it was assumed that experimentally only relative optical 
retardations are measured. Therefore, with suitable transformations the absolute 
phases of the components of the light vectors 1E  and 2E  were eliminated from 
the equations. Polarization of light is completely determined by the relative 
optical retardation and by the amplitude ratio of 1E  and 2.E  

 
 

4. TOMOGRAHPY  OF  THE  DIELECTIRC  TENSOR  FIELD 

4.1. Measuring  absolute  optical  retardations 
 
Schupp [21,22] has developed a method for the tomography of the dielectric 

tensor field using interferometric measurement of absolute optical retardations. 
Such measurements are carried out by rotating the test object around a number of 
axes. In linear approximation integrals (3.1)–(3.3) permit determination of the 
distribution of the normal components of the stress tensor by rotating the test 
object around the 1,x  2 ,x  and 3x  axes. Additional tomographic measurements 
permit determination of other dielectric tensor components as well. Equa-
tions (3.1) and (3.2) can be generalized for the case when the orientation of the 
dielectric tensor axes is arbitrary. 

The method developed in [21,22] is mathematically correct and its applicability 
has been proved with numerical and physical experiments. Unfortunately, the 
author had to confess that he was able to obtain only qualitative results con-
cerning the dielectric tensor field in his test object. That is due to the unavoidable 
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measurement errors when by interferometric measurements the test object is 
placed in an immersion tank. 

 
4.2. Measuring  relative  optical  retardations 

 
Experimentally it is much simpler to measure in photoelastic tomography the 

characteristic parameters: the characteristic angles 0α  and α∗  and the relative 
characteristic optical retardation .∗∆  However, in the general case the problem is 
highly complicated. It has been considered by Kubo and Nagata [15,23]. Due to 
evident complications with solving the problem, Kubo has discussed also 
application of the scattered light method [24]. 

A comparatively simple case is measurement of the Kerr effect if the direction 
of the electric field is constant. In the case of the Kerr effect the dielectric tensor 
is an ellipsoid of rotation. Thus, 1 2ε ε−  characterizes the Kerr effect and the 
dielectric tensor field can be determined using methods of scalar field tomo-
graphy [6]. 

The particular case of axisymmetric dielectric tensor fields has been con-
sidered in [25]. Some practical results have been obtained in the case of the 
axisymmetric Kerr effect [7]. 

Hammer and Lionheart [26] describe an algorithm for tomographic measure-
ment of the dielectric tensor field. Instead of the system of equations (2.11) and 
(2.12) they use the equations 
 

1
11 0 1 12 2

d 1
( ) ,

d 2

E
i C E iC E

z
ε ε ε′′ ′′= − − −                             (4.1) 

 

2
12 1 22 0 2

d 1
( ) ,

d 2

E
iC E i C E

z
ε ε ε′′ ′′= − − −                             (4.2) 

 
where 0 11 22 33( ) 3.ε ε ε ε= + +  

This presentation of the equations of integrated photoelasticity presumes that 
absolute optical retardations are measured. However, in [26] it is assumed that the 
characteristic parameters are measured experimentally. Unfortunately, with the 
system of equations (4.1) and (4.2), the matrix U  (Eq. (2.3)) is not unimodular 
and the theory of characteristic directions is not valid. 

The authors of [26] express the matrix U  in the form 
 

0( , , )exp( ),U S iΦα α∗ ∗= ∆                                  (4.3) 
 
where Φ  is the global phase of the transfer matrix .U  Contrary to the claims of 
the authors, it is impossible to determine Φ  without interferometric measure-
ments. 

Finally, relationship (2.16) is obtained in [26], which with the notations of the 
present paper can be written as 
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0

22 0cos2 ( )d .
2

z

z

C z
πα ε ε
λ

∗∆
= −∫                              (4.4) 

 
Here 0 ,α α α ∗= =  since in the case of linear approximation the birefringent 

medium is equivalent to a birefringent plate with an azimuth of the principal 
directions equal to .α  The right side of Eq. (4.4) can be measured only with 
interferometric methods. Thus Eq. (4.4) does not give the value of 22 0ε ε−  and 
the tomographic algorihm [26] is wrong in principle. However, in the case of 
weak birefringence we have 
 

0 11 22

1
( ),

2
ε ε ε= +                                           (4.5) 

 
where 11ε  and 22ε  are the quasiprincipal values of the dielectric tensor in the 
plane 1 2.x x  

Introducing Eq. (4.5) into (4.4), we obtain 
 

0

11 22cos2 ( )d .
2 2

z

z

C z
πα ε ε
λ

∗∆
= −∫                              (4.6) 

 
Equation (4.6) confirms that if only relative characteristic optical retardations 

are measured, information can be obtained only about the integrals of 11 22 ,ε ε−  

22 33 ,ε ε−  33 11,ε ε−  and 12 ,ε  23 ,ε  and 31.ε  No information about the normal 
components of the dielectric tensor can be obtained separately. Equation (4.6) 
does not give much hope to build a tomographic algorithm for the analysis of a 
dielectric tensor field in the general case. 

 
 

5. TOMOGRAPHY  OF  THE  STRESS  FIELD 
 
It is well known that a priori information may be of great help in solving 

complicated inverse problems. In the case of the tomography of the dielectric 
tensor field usually no such information is available. At the same time in stress 
field tomography one may use the equations of the theory of elasticity as a priori 
information. That explains why today we have no practical algorithms for the 
tomography of the dielectric tensor field, except for some particular cases, but 
have several algorithms for the tomography of the stress field. 

Let us mention that in the case of plane deformation, the axial stress 
distribution can be determined with the methods of scalar field tomography, since 
only the axial stress influences the polarization [9]. This permits measurement of 
the axial stress distribution in optical fibres and fibre preforms of arbitrary cross-
section [27]. The other stress components can be calculated with a method of 
hybrid mechanics [28,29]. 
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A 3D stress field can be characterized also by scalar functions like the first 
invariant of the stress tensor: 

 

1 1 2 3.I σ σ σ= + +                                             (5.1) 
 

It has been established that the coefficient of the extinction of X-rays depends 
linearly on 1.I  On this basis X-ray tomography has been applied to the 
measurement of the field of 1I  in certain constructions [30]. 

 
5.1. The  method  of  Sharafutdinov 

 
Sharafutdinov [4,31] suggested the following method for the measurement of 

the normal stress in a section of a test object of arbitrary shape. Let us assume 
that by photoelastic tomographic measurements the specimen is rotated around 
the z  axis (Fig. 4). Tomographic photoelastic measurements are carried out in 
two parallel sections, 0z z=  and 0 .z z z= + ∆  For many light rays the parameter 
of the isoclinic α  and the relative optical retardation ∗∆  are measured. Thus, 
experimentally the algorithm is based on Eqs (2.16) and (2.17), which in this case 
take the form 

 

1 cos2 ( )dy ,z xV Cα σ σ∗ ′ ′= ∆ = −∫                           (5.2) 
 

2 sin 2 2 dy .x zV Cα τ ′∗ ′= ∆ = ∫                                 (5.3) 
 

Besides, the value of zσ  at the boundary has to be measured. This can be 
done by increasing the number of photoelastic measurements of the average axial 
stress near the boundary and by extrapolating the results to the boundary. That is 
a generalization of the method proposed by Cheng [32] for stress measurement at 
the surface of axisymmetric specimens of arbitrary shape [4,31]. 

 
 

 
 

Fig. 4. Explanation of the tomographic measurement schema. 
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Applying the transverse ray transform [4] to the functions 1V  and 2V  and 
using equations of equilibrium, determination of the field of zσ  is reduced to a 
boundary value problem for the Poisson equation. Sharafutdinov has shown that 
solution of this tomographic problem is unique and only the distribution of zσ  
can be determined in this way. However, by rotating the specimen around 
different axes in tomographic measurements, all the components of the stress 
tensor can be determined. 

A drawback of this method is that the boundary values of zσ  have to be 
determined with a method of extrapolation. That demands additional measure-
ments near the boundary. Besides, this method is applicable only if the contour of 
the cross-section is a convex curve. 

 
5.2. The  method  of  decomposition 

 
Since Radon inversion for the tensor field does not exist, the problem of stress 

field tomography can be solved if we can decompose it to several problems of 
scalar field tomography for different components of the stress tensor. This can be 
done in the following way [9,33]. Let us assume that photoelastic tomographic 
measurements have been carried out in two parallel sections, at a distance of z∆  
from each other, rotating the specimen around the axisz  (Fig. 4). 

We denote the values of the functions 1V  and 2V  in the auxiliary section as 

1V ′  and 2.V ′  Considering the equilibrium of the 3D segment ABC  in the direction 
of the x′  axis (Fig. 4), we can write 

 

u ld ,
C

x
A

z y T Tσ ′ ′∆ = −∫                                            (5.4) 

 

where uT  and 1T  are the shear forces on the upper and lower surfaces of the 
segment, respectively: 

 

u 2 l 2

1 1
d ,     d .

2 2

B B

l l

T V x T V x
C C

′ ′ ′= =∫ ∫                                (5.5) 

 

Taking into consideration relationships (5.4) and (5.5), we get from Eq. (5.2) 
 

1
2 2

l

1
d d d .

2

C B B

z
A l

V
y V x V x

C z C
σ

 
′ ′ ′ ′= − −  ∆  

∫ ∫ ∫                             (5.6) 

 

Since tomographic photoelastic measurement data can be obtained for all light 
rays y′  in the xy  plane, Eq. (5.6) expresses the Radon transform of the field of 
the stress .zσ  Thus, we have reduced a problem of tensor field tomography to a 
problem of scalar field tomography for a single stress component .zσ  The field 
of zσ  can be determined using any of the well-known Radon inversion 
techniques [1,2]. By rotating the specimen around the x  and y  axes, in tomo-
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graphic measurements fields of xσ  and yσ  can also be determined. Tomo-
graphic measurements by rotating the specimen around additional three axes give 
all the components of the stress tensor. 

This method has been implemented with an automatic polariscope AP-04 SM 
(Fig. 5) [33]. The algorithm of tomographic photoelasticity assumes that optical 
retardation and the parameter of the isoclinic are measured experimentally. 
Besides, the direction of the first principal stress 1σ  has to be determined. For 
that purpose a specific phase-stepping algorihm [34] is used. The polariscope  
AP-04 SM is controlled by an IBM Thinkpad. 

For automatic rotation of small specimens a rotary stage has been constructed. 
Rotation is effectuated with a stepper motor which permits rotation of the specimen 
with a precision of 0.1 deg. The specimen is fixed to the rotary stage so that the 
investigated part of it is placed in an immersion tank. 

We illustrate the method with two examples. 
First, stresses in a high-pressure lamp (Fig. 6a) were measured. The lamp has 

mostly axisymmetric form and stresses can be measured with axisymmetric 
algorithms of integrated photoelasticity [9]. In section AB of the stem, which is 
not axisymmetric, the normal stress field was determined with photoelastic 
tomography (Fig. 6b). 

 
 

 
 

Fig. 5. Computer-controlled polariscope AP-04 SM. The coordinate device with a rotary stage for 
small test objects is in the middle of the picture. 

 
 

 
 

(a) (b) 
 

Fig. 6. Geometry of the high-pressure lamp (a) and normal stress field in section AB (b). 
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Fig. 7. Cross-section of a bow-tie optical fibre preform and distribution of the axial stress. 
 

 
In tomographic measurements 180 projections were used. The stress field was 

calculated with the algorithm of Cormack [35]. Since residual stress should be in 
equilibrium, the value of the average stress permits estimation of the precision of 
measurements. In this case the average stress was 0.2 MPa, making about 4% of 
the maximum value of the stress. 

Figure 7 shows the geometry of a cross-section of a bow-tie fibre preform and 
the axial stress field. In tomographic photoelastic measurements 180 projections 
were used. For each projection about 100 measurements per millimetre were 
made. The average value of the axial stress was – 2.9 MPa, that is, less than 5% 
of the maximum tensile stress in the stress-inducing parts. Thus the precision of 
the measurements is satisfactory. 

 
 

CONCLUSIONS 
 
We have shown that in formulating the problem of optical tensor field tomo-

graphy the technology of optical measurements has to be taken into account. The 
tomographic algorihm in the case of interferometric measurements is completely 
different from that in the case where only relative optical reatardations are 
measured. Ignoring this may lead to imaginary tomographic algorithms. It is 
outlined that an important difference between the tomographic algorithms of the 
dielectric tensor and stress tensor fields is that in the second case a priori 
information is available in the form of equations of the theory of elasticity. This 
has helped to develop two algorithms of stress field tomography. Application of 
one algorithm is demonstrated with two practical examples. 



 126

ACKNOWLEDGEMENT 
 
The support of the Estonian Science Foundation (grant No. 6881) is gratefully 

acknowledged. 
 
 

REFERENCES 
 

  1. Herman, C. T. Image Reconstruction from Projections. Academic Press, New York, 1980. 
  2. Kak, C. A. and Slaney, M. Principles of Computerized Tomography. IEEE Press, New York, 

1988. 
  3. Aben, H., Idnurm, S. and Puro, A. Integrated photoelasticity in case of weak birefringence. In 

Proceedings of 9th International Conference on Experimental Mechanics, Vol. 2. 
Copenhagen, 1990, 867–876. 

  4. Sharafutdinov, V. A. Integral Geometry of Tensor Fields. VSP, Utrecht, The Netherlands, 
1994. 

  5. Pikalov, V. V. and Melnikova, T. S. Tomography of Plasmas. Nauka SO, Novosibirsk, 1995 (in 
Russian). 

  6. Hertz, H. M. Kerr effect tomography for nonintrusive spatially resolved measurements of 
asymmetric electric field distributions. Appl. Opt., 1986, 25, 914–921. 

  7. Aben, H. K. Kerr effect tomography for general axisymmetric field. Appl. Opt., 1987, 26, 
2921–2924. 

  8. Kuske, A. and Robertson, G. Photoelastic Stress Analysis. J. Wiley, London, 1974. 
  9. Aben, H. and Guillemet, C. Photoelasticity of Glass. Springer, Berlin, 1993. 
10. Aben, H. Optical phenomena in photoelastic models by the rotation of principal axes. Exp. 

Mech., 1966, 6, 13–22. 
11. Aben, H. Integrated Photoelasticity. McGraw-Hill, New York, 1979. 
12. Aben, H. Characteristic directions in optics of twisted birefringent media. J. Opt. Soc. Am. A, 

1986, 3, 1414–1421. 
13. Mangal, S. K. and Ramesh, K. Determination of characteristic parameters in integrated photo-

elasticity by phase-shifting technique. Opt. Lasers Eng., 1999, 31, 263–278. 
14. Tomlinson, R. A. and Patterson, E. A. The use of phase-stepping for the measurement of 

characteristic parameters in integrated photoelasticity. Exp. Mech., 2002, 42, 43–50. 
15. Kubo, H. and Nagata, R. Determination of dielectric tensor fields in weakly inhomogeneous 

anisotropic media. J. Opt. Soc. Am., 1979, 69, 604–610. 
16. Andrienko, Y. A. and Dubovikov, M. S. Optical tomography of tensor fields: the general case. 

J. Opt. Soc. Am. A, 1994, 11, 1628–1631. 
17. Berezhna, S. Yu., Berezhnyi, I. V. and Vlokh, O. G. Optical tomography of anisotropic 

inhomogeneous medium. In Proceedings of 10th International Conference on Experimental 
Mechanics, Vol. 1. Lisbon, 1994. Balkema, Rotterdam, 431–435. 

18. Wijerathne, M. L. L., Oguni, K. and Hori, M. Tensor field tomography based on 3D photo-
elasticity. Mech. Materials, 2002, 34, 533–545. 

19. Puro, A. E. On tomographic magnetophotoelasticity. Optics. Spectrosc., 1996, 81, 119–125. 
20. Aben, H., Idnurm, S., Josepson, J., Kell, K.-J. and Puro, A. Optical tomography of the stress 

tensor field. In Analytical Methods for Optical Tomography (Levin, G. G., ed.), Proc. SPIE, 
1991, 1843, 220–229. 

21. Schupp, D. Optische Tensortomographie zur Bestimmung räumlicher Spannungs-verteilungen. 
Tech. Mess., 1999, 66, 54–60. 

22. Schupp, D. Optische Tensortomographie zur Untersuchung räumlicher Spannungsverteilungen. 
Fortschritt – Berichte VDI, Reihe 8, 2000, 858. 

23. Kubo, H. and Nagata, R. Determination of dielectric tensor fields in weakly inhomogeneous 
anisotropic media. II. J. Opt. Soc. Am., 1981, 71, 327–333. 



 127

24. Kubo, H. Approach to dielectric tensor slice-type tomography. J. Opt. Soc. Am. A, 1997, 14, 
2299–2313. 

25. Aben, H. K. and Josepson, J. On the investigation of axisymmetric dielectric tensor fields by 
integrated photoelasticity. In Photoelasticity in Engineering Practice (Paipetis, S. A. and 
Holister, G. S., eds). Elsevier Applied Science Publishers, London, 1985, 103–132. 

26. Hammer, H. and Lionheart, R. B. Reconstruction of spatially inhomogeneous dielectric tensors 
through optical tomography. J. Opt. Soc. Am. A, 2005, 22, 250–255. 

27. Abe, T., Mitsunaga, Y. and Koga, H. Photoelastic computer tomography: a novel measurement 
method for axial residual stress profile in optical fibers. J. Opt. Soc. Am. A, 1986, 3, 133–
138. 

28. Puro, A. E. and Kell, K.-J. E. Complete determination of stress in fiber preforms of arbitrary 
cross-section. J. Lightwave Technol., 1992, 10, 1010–1014. 

29. Park, Y., Paek, U. and Kim, D. Y. Complete determination of the stress tensor of a polarization-
maintaining fiber by photoelastic tomography. Opt. Lett., 2002, 27, 1217–1219. 

30. Gorazdovskij, T. Yu., Vainberg, E. I. and Faingoiz, M. L. Investigation of 3D stress-strain 
fields with X-ray computer tomography. In Proceedings of 2nd All-Union Symposium on 
Computerized Tomography. Kujbyshev, 1985, 46 (in Russian). 

31. Sharafutdinov, V. On integrated photoelasticity in case of weak birefringence. Proc. Estonian 
Acad. Sci. Phys. Math., 1989, 38, 379–389 (in Russian). 

32. Cheng, Y. F. Stress at notch root of shafts under axially symmetric loading. Exp. Mech., 1970, 
10, 534–576. 

33. Aben, H., Errapart, A., Ainola, L. and Anton, J. Photoelastic tomography for residual stress 
measurement in glass. Opt. Eng., 2005, 44, 093601. 

34. Aben, H., Ainola, L. and Anton, J. Half-fringe phase-stepping with separation of the principal 
stress directions. Proc. Estonian Acad. Sci. Eng., 1999, 5, 198–211. 

35. Cormack, A. M. Representation of a function by its line integrals, with radiological applica-
tions. J. Appl. Phys., 1963, 34, 2722–2727. 

 
 

Tensorvälja  optilise  tomograafia  reaalsetest  ja  
irreaalsetest  algoritmidest 

 
Hillar Aben, Andrei Errapart ja Leo Ainola 

 
On näidatud, et optilise tensorvälja tomograafia algoritmide koostamisel on 

vajalik arvestada optiliste mõõtmiste metoodikat. Absoluutsete optiliste käigu-
vahede interferomeetrilisel mõõtmisel erinevad polariseeritud valguse levikut 
kirjeldavad võrrandid põhimõtteliselt juhust, mil mõõdetakse vaid relatiivseid 
optilisi käiguvahesid. Selle erinevuse ignoreerimine võib viia ebareaalsete 
algoritmideni. Oluliseks erinevuseks dielektrilise tensori välja ja pingetensori 
välja tomograafilisel määramisel on asjaolu, et teisel juhul saab aprioorse infor-
matsioonina kasutada elastsusteooria võrrandeid. See on võimaldanud pinge-
tensori välja määramiseks välja töötada kaks tomograafilist algoritmi, millest ühe 
praktilist kasutamist on illustreeritud rakendusnäidetega. 

 


