The notions of transfer matrix, transfer equivalence, and input-output equivalence for linear control systems on time scales are introduced. These concepts generalize the cor- responding continuous- and discrete-time versions. Necessary and sufficient conditions for transfer and input-output equivalence are presented. As the main tool, an extension of the Laplace transform for functions defined on a time scale is used.
1. Wolovich,W.A.LinearMultivariableSystems.Springer-Verlag,NewYork,1974.
https://doi.org/10.1007/978-1-4612-6392-0
2. Dickinson, B. W., Kailath, T. and Morf, M. Canonical matrix fraction and state-space descriptions for deterministic and stochastic linear systems. IEEE Trans. Autom. Control, 1974, 19, 656–667.
https://doi.org/10.1109/TAC.1974.1100699
3. Sontag,E.MathematicalControlTheory.Springer-Verlag,NewYork,1990.
4. Hilger, S. Ein Maßkettenkalkülmit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg, 1988.
5. Goodwin, G. C., Middleton, R. H. and Poor, H. V. High-speed digital signal processing and control. Proc. IEEE, 1992, 80, 240–259.
https://doi.org/10.1109/5.123294
6. Bohner, M. and Peterson, A. Dynamic Equations on Time Scales. Birkhauser, Boston, 2001.
https://doi.org/10.1007/978-1-4612-0201-1
7. Lakshikantham,V.,Sivasundaram,S.andKaymakcalan,B.DynamicSystemsonMeasure Chains. Kluwer, 1996.
https://doi.org/10.1007/978-1-4757-2449-3
8. Goodwin, G. C., Graebe, S. F. and Salgado, M. E. Control System Design. Prentice Hall International, Inc., Upper Saddle River, N.Y., 2001.
9. Blomberg, H.and Ylinen, R. Algebraic Theory of Multivariable Linear Systems. Academic Press, London, 1983.