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Abstract. The notions of transfer matrix, transfer equivalence, and input-output equivalence
for linear control systems on time scales are introduced. These concepts generalize the cor-
responding continuous- and discrete-time versions. Necessary and sufficient conditions for
transfer and input-output equivalence are presented. As the main tool, an extension of the
Laplace transform for functions defined on a time scale is used.
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1. INTRODUCTION

The transfer and input-output equivalence for control systems has been studied
both in continuous- and discrete-time cases. Especially for linear systems the
definitions, properties, and results are very similar or even identical (see, for
example, [1−3]).

The language of time scales, created in 1988 by Stefan Hilger [4], seems
to be an ideal tool for unifying the theories of continuous- and discrete-time
systems. One of the main concepts of this tool is the delta derivative, which is
a generalization of the ordinary (time) derivative. In case the time scale is the real
line, we get the ordinary derivative. In case the time scale is a sequence of integers,
the delta derivative of a function is the difference of its values at subsequent points.
Thus, differential as well as difference equations are naturally accommodated into
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the theory. An inverse operation to differentiation, i.e. integration, has alsobeen
extended into the time scale domain.

The transfer matrices of continuous- and discrete-time control systems are
defined via the Laplace transform and theZ-transform of the input-output equation,
respectively. The use of a time scale allows uniting both transforms into one
concept – the Laplace transform on a time scale. However, besides standard
discrete- and continuous-time systems, this approach allows study of several other
cases such as, for example, time scales based on Cantor set, harmonic numbers,
etc. Another approach to unify the Laplace transform andZ-transform, restricted
to the casesT = R or T = hZ, was introduced in [5].

The main goal of this paper is to study the transfer and input-output equivalence
for linear control systems, described by the set of input-output polynomial (in
delta derivative operation) equations. The paper is organized as follows. In
section 2 we recall the calculus on time scales. Section 3 presents the concept
of Laplace transform on a time scale. In Section 4 we demonstrate that two
discrete-time systems defined in terms of the forward shift operator are classically
transfer equivalent if and only if their representations in terms of the forward
difference operator are transfer equivalent. Section 5 defines transfer and input-
output equivalence for linear control systems on a time scale and presentsnecessary
and sufficient conditions for both cases. Section 6 presents some concluding
remarks.

2. CALCULUS ON TIME SCALES

We give here a short introduction to differential calculus on time scales. This
is a generalization of the standard differential calculus, on the one hand,and the
calculus of finite differences, on the other hand. Then we describe the inverse
operation – integration. This will allow us to solve differential equations on time
scales. The proofs and more material on this subject can be found in [6].

A time scaleT is an arbitrary nonempty closed subset of the setR of real
numbers. The standard cases compriseT = R, T = Z, T = hZ for h > 0,
A = {t ∈ R : t ≤ 0} ∪ { 1

n : n ∈ N}. We assume thatT is a topological space with
the relative topology induced fromR. For t ∈ T we define
• theforward jump operatorσ : T→T by σ(t) := inf{s ∈ T : s > t};
• thebackward jump operatorρ : T→T by ρ(t) := sup{s ∈ T : s < t};
• thegraininess functionµ : T→[0,∞) by µ(t) := σ(t) − t.

On the basis of defined operators we can classify points on the real line.
Namely,
• if σ(t) > t, thent is calledright-scattered;
• if σ(t) < t, thent is calledleft-scattered;
• if t < sup T andσ(t) = t, thent is calledright-dense;
• if t > inf T andσ(t) = t, thent is calledleft-dense.
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We define also the setT
k as follows:Tk := T\(ρ(sup T), sup T] if sup T < ∞

andT
k := T if sup T = ∞, i.e. T

k contains thoset that are nonmaximal or left-
dense. Finally, we will denotefσ := f ◦ σ for any functionf : T→R.

Example 2.1.
• If T = R, then for anyt ∈ R, σ(t) = t = ρ(t); the graininess function

µ(t) ≡ 0.
• If T = Z, then for everyt ∈ Z, σ(t) = t + 1, ρ(t) = t − 1; the graininess

functionµ(t) ≡ 1.
• Let q > 1. We define the time scaleT = qZ := {qk : k ∈ Z} ∪ {0}. Then

σ(t) = qt, ρ(t) = t
q , andµ(t) = (q − 1)t for all t ∈ T.

2.1. Delta derivative

Definition 2.2. Let f : T→R and t ∈ T
k. Thedelta derivativeof f at t, denoted

byf4(t), is the real number(provided it exists) with the property that given anyε,
there is a neighbourhoodU = (t − δ, t + δ) ∩ T (for someδ > 0) such that

|(f(σ(t)) − f(s)) − f4(t)(σ(t) − s)| ≤ ε|σ(t) − s|

for all s ∈ U . Moreover, we say thatf is delta differentiableonT
k providedf4(t)

exists for allt ∈ T
k.

In general, the functionσ is not required to be differentiable.

Example 2.3.
• If T = R, then f : R→R is delta differentiable att ∈ R iff f4(t) =

lims→t
f(t)−f(s)

t−s = f ′(t), i.e. iff f is differentiable in the ordinary sense att.
• If T = Z, then f : Z→R is always delta differentiable at everyt ∈ Z

with f4(t) = f(σ(t))−f(t)
µ(t) = f(t + 1) − f(t) = 4f(t), where4 is the usual

forward difference operator defined by the last equation above.
• If T = qZ, thenf4(t) = f(qt)−f(t)

(q−1)t for all t ∈ T \ {0}.

2.2. Properties of delta derivative

Proposition 2.4. Let f : T→R, g : T→R be two delta differentiable functions
defined on the time scaleT and lett ∈ T. The delta derivative satisfies the following
properties:
(i) if t ∈ T

k, thenf has at most one derivative att;

(ii) (af + bg)4(t) = af4(t) + bg4(t) for any constantsa, b;

(iii) (fg)4(t) = f4(t)g(t) + f(σ(t))g4(t) = f(t)g4(t) + f4(t)g(σ(t));

(iv) if g(t)g(σ(t)) 6= 0, then(f
g )4(t) = f4(t)g(t)−f(t)g4(t)

g(t)g(σ(t)) .
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Remark 2.5. The delta derivative oft2 is t + σ(t). This means that the second
delta derivative oft2 may not exist.

A function f : T→R is calledregulated, provided its (finite) right-sided limits
exist at all right-dense points inT and its (finite) left-sided limits exist at all left-
dense points inT. A function f : T→R is calledrd-continuous, provided it is
continuous at right-dense points inT and its (finite) left-sided limits exist at left-
dense points inT. It can be shown [7] that
(i) f is continuous⇒ f is rd-continuous⇒ f is regulated,
(iii) σ is rd-continuous,
(iii) the graininess functionµ is rd-continuous.

Proposition 2.6. If a functionf : T→R has delta-derivative, then it is rd-continu-
ous.

2.3. Integration

A continuous functionf : T→R is calledpre-differentiablewith (the region of
differentiation)D, providedD ⊂ T

k, T
k \ D is countable and contains no right-

scattered elements ofT, andf is differentiable at eacht ∈ D. It can be proved
that if f is regulated, then there exists a functionF that is pre-differentiable with
the region of differentiationD such thatF4(t) = f(t) for all t ∈ D. Any such
function is called a pre-antiderivative off . Then theindefinite integralof f is
defined by

∫
f(t)4t := F (t) + C, whereC is an arbitrary constant. TheCauchy

integral is
s∫

r

f(t)4t = F (s) − F (r) for all r, s ∈ T
k.

A function F : T→R is called anantiderivativeof f : T→R, providedF4(t) =
f(t) holds for allt ∈ T

k.

Remark 2.7. It can be shown that every rd-continuous function has an
antiderivative. Moreover, iff(t) ≥ 0 for all a ≤ t < b and

∫ b
a f(τ)4τ = 0,

thenf ≡ 0.

Example 2.8.
• If T = R, then

∫ b
a f(τ)4τ =

∫ b
a f(τ)dτ , where the integral on the right-hand

side is the usual Riemann integral.

• If T = hZ, h > 0, then
∫ b
a f(τ)4τ =

∑b/h−1
t=a/h f(th)h for a < b.

Remark 2.9. An antiderivative of 0 is 1, an antiderivative of 1 ist, but it is not
possible to find a closed formula for an antiderivative oft: an antiderivative oft

2

2

is t+σ(t)
2 = t + µ(t)

2 .
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Under assumptions thata ∈ T, supT = ∞, andf is an rd-continuous function
on [a,∞) we define animproper integralby

∞∫

a

f(t)4τ := lim
b→∞

∫ b

a
f(t)4τ,

provided this limit exists.

3. LAPLACE TRANSFORM

Let p : T→C. It has been proved [7] that there exists a unique forward solution
of the initial value problemx4 = p(t)x, x(t0) = x0 for t ≥ t0.

Definition 3.1. The exponential function is a unique forward solution of the initial
value problemx4 = p(t)x, x(t0) = 1 for t ≥ t0. It is denoted byep(·, t0).

Example 3.2.Let p be any complex constant function.
• If T = R, thenep(t, t0) = ep(t−t0).

• If h > 0 andT = hZ, thenep(t, t0) = (1 + ph)(t−t0)/h for t ≥ t0.

• If T = qZ, thenep(t, t0) =
∏

s∈[t0,t)

[1 + (q − 1)ps] for t ≥ t0.

Let us assume that the time scaleT0 is such that0 ∈ T0 andsup T0 = ∞.
From now on we will assume thatz is a constant complex function onT. For any
functionz we denote

(	z)(t) := −
z

1 + µ(t)z
,

wheret ∈ T
k. If it is well defined for allt ∈ T, thenz is calledregressive. If z is

regressive, thene	z is the inverse ofez (i.e. eze	z = 1).

Definition 3.3. Assume thatx : T0→R is regulated. The Laplace transform ofx is
defined as

L{x}(z) :=

∞∫

0

x(t)e	z(σ(t), 0)4t

for z ∈ D{x}, whereD{x} is the set of all complex constant functions for which
the improper integral exists.

The Laplace transform is linear, that is the following holds forz ∈ D{x} ∩
D{y}:

L{αx + βy}(z) = αL{x}(z) + βL{y}(z).

Moreover, the following holds:
• L{1}(z) = 1

z , providedlimt→∞ e	z(t, 0) = 0 holds;
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• L{x4}(z) = zL{x}(z)−x(0) andL{x44}(z) = z2L{x}(z)−zx(0)−x4(0),
providedlimt→∞ x(t)e	z(t, 0) = 0 holds;

• L{ep(·, 0)}(z) = 1
z−p , providedlimt→∞ ep	z(t, 0) = 0 holds, wherep ∈ C is

regressive;
• Let x : T→C be a regulated function; thenL{

∫ t
0 x(τ)4τ}(z) = 1

zL{x}(z) for
z ∈ C \ {0} satisfyinglimt→∞ e	z(t, 0)

∫ t
0 x(τ)4τ = 0.

Remark 3.4. The standard formula for the Laplace transform of the shifted
function

L[f(t − t0)1I(t − t0)] = e−t0sL(f(t)]

does not hold, in general.

Example 3.5.
• If T0 = [0,∞), then the Laplace transform defined above coincides with the

standardL-transform for the continuous-time case.
• If T0 = N0, then(z + 1)L{x}(z) = Z{x}(z + 1), whereZ{x} is the usual

Z-transform ofx for the discrete-time case.

Example 3.6. [6] Let us consider the equation

x44 + 5x4 + 6x = 0, x(0) = 1, x4(0) = −5

defined on any time scaleT0. Using the Laplace transform defined above, we have

0 = z2L{x}(z) − z + 5 + 5[zL{x}(z) − 1] + 6L{x}(z),

L{x}(z) =
3

z + 3
−

2

z + 2

and hence
x(t) = 3e−3(y, 0) − 2e−2(t, 0)

for all t ∈ T0. One can notice that the continuous- and discrete-time cases are
included within this example.

4. TRANSFER EQUIVALENCE FOR
DISCRETE-TIME SYSTEMS

In this section two descriptions of discrete-time systems are considered. The
first description is given in terms of the forward time-shift operator, and the second
in terms of the forward time-difference operator.

If T = Z, then delta derivative4 acts on a sequence{f(k)} by

(4f)(k) = f(k + 1) − f(k),
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so it is now the forward time-difference operator. Letδ denote the forward time-
shift operator

(δf)(k) = f(k + 1).

If id denotes the identity map, then4 = δ − id and, conversely,δ = 4 + id.
Usually the discrete-time linear systems are defined in terms of the time-shift

operator, either in the state-space form

δx = Ax + Bu,

y = Cx + Du

or in the input-output difference equation form

Γ : M(δ)y = N(δ)u, (1)

whereM andN are polynomial matrices in the shift operatorδ.
Assuming that sufficiently many elements of the sequences(y(0), y(1), . . .)

and (u(0), u(1), . . .) are zero and applying the standardZ-transform to input-
output equation (1), one can compute the standard transfer matrix of system (1)

HΓ(z) = M(z)−1N(z).

We say that two systemsΓ1 and Γ2 of the form (1) areclassically transfer
equivalentif their standard transfer matrices coincide.

Now, replacingδ by 4 + id, we can transform the systemΓ into a different
representation

Λ : P (4)y = Q(4)u, (2)

whereP andQ are certain polynomial matrices in the difference operator∆.
Observe that transformation ofΓ to Λ is invertible. Replacing4 by δ − id in

(2), we can recover the systemΓ. Let T denote the map that assigns the systemΛ
to a systemΓ, so we can writeΛ = T (Γ) .

For Λ, we can define in analogy with [8] its transfer matrix and study transfer
equivalence of two systems of this form. We prove the following.

Proposition 4.1. Two discrete-time systemsΓ1 and Γ2 are classically transfer
equivalent if and only if the systemsT (Γ1) andT (Γ1) are transfer equivalent.

Proof. Let Λi = T (Γi) : Pi(4)y = Qi(4)u for i = 1, 2. ThenPi(4) =
Mi(4 + id) andQi(4) = Ni(4 + id) for i = 1, 2. Observe that

L{(4 + id)n} = (z + 1)n

for n ∈ N (we treat(4 + id)n as an operator on functions). ThusL{Pi(4)} =
Mi(z + 1), L{Qi(4)} = Ni(z + 1), i = 1, 2, and

GΛi
(z) = Pi(z)−1Qi(z)

= Mi(z + 1)−1Ni(z + 1) = HΓi
(z + 1).
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The systemsΓ1 and Γ2 are classically transfer equivalent if and only if the
standard transfer matricesHΓ1

and HΓ2
are equal. This holds if and only if

the transfer matrices ofΛ1 and Λ2 are equal, which means thatΛ1 and Λ2 are
equivalent.

Note that Proposition 4.1 for SISO systems was proved in [8].

5. TRANSFER MATRIX. INPUT-OUTPUT
AND TRANSFER EQUIVALENCE

Let Λ be a system defined by the equation

P (4)y = Q(4)u, (3)

wherey ∈ R
r, u ∈ R

m, 4 is the operator of delta derivative on the time scale
T (i.e. 4f = f4), P (4) andQ(4) are, respectively,r × r andr × m matrices
whose entries are polynomials in operator4. We assume thatdetP (4) 6≡ 0.

Denote the maximal degrees of the entries ofP and Q by dP and dQ,
respectively. Lety(k)(0) = 0 for k = 0, . . . , dP andu(k)(0) = 0 for k = 0, . . . , dQ.
Applying the Laplace transform on both sides of the input-output equation (3), and
taking into account the linearity of the transform as well as the fact that

L{x4n

}(z) = znL{x}(z) −
n−1∑
k=0

zkxn−k−1(0),

we obtain
P (z)Y (z) = Q(z)U(z),

whereY (z) andU(z) are the Laplace transforms ofy andu, respectively.
As P (z) is invertible for almost allz ∈ C, we getY (z) = P (z)−1Q(z)U(z).

As usual,GΛ(z) = P (z)−1Q(z) is calledthe transfer matrixof systemΛ.

Definition 5.1. Two systemsΛ1 andΛ2 of the form(3) are calledtransfer equivalent
on the time scaleT if their transfer matrices are equal(as rational complex
matrices).

Obviously, transfer equivalence is an equivalence relation in the set ofall
systems of the form (3).

Example 5.2.
• If T = R, the definition of transfer equivalence is the same as in [9]

(though in [9] the Laplace transform is avoided and the transfer matrix is a
rational matrix with respect to the differential operator).

• WhenT = Z, our delta operator becomes the forward difference operator and
not just the forward shift as in [9]. In Section 4 we showed that the two
descriptions are equivalent.
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Definition 5.3. Two systemsΛ1 and Λ2 of the form(3) are called input-output
equivalenton the time scaleT if they are satisfied by the same pairs(y, u).

Let us recall that a square polynomial matrixK(z) is calledunimodular if
det K(z) is constant and different from0. Then the inverse ofK(z) is also a
polynomial unimodular matrix. It is known [1] that K(z) is unimodular if and
only if it can be obtained from the identity matrix by finitely many elementary row
operations over the ring of polynomials inz.

Proposition 5.4. Two input-output systems given by matrices[P1(z), Q1(z)] and
[P2(z), Q2(z)] are transfer equivalent if and only if there are polynomial matrices
M1(z), M2(z) with det Mi(z) 6= 0, i = 1, 2, such that

M1(z)[P1(z), Q1(z)] = M2(z)[P2(z), Q2(z)]. (4)

Proof. The proof is standard. Let us assume that systemsΛ1 andΛ2 are transfer
equivalent, i.e.GΛ1

(z) = P−1
1 (z)Q1(z) = P−1

2 (z)Q2(z) = GΛ2
(z). Let d(z) =

det P1(z) det P2(z) and defineM1(z) := d(z)P−1
1 (z), M2(z) = d(z)P−1

2 (z).
Thendet Mi(z) 6= 0, i = 1, 2, and

M1(z)[P1(z), Q1(z)] = [d(z)I, d(z)P−1
1 (z)Q1(z)],

M2(z)[P2(z), Q2(z)] = [d(z)I, d(z)P−1
2 (z)Q2(z)].

So we get (4).
Now let us assume that there exist polynomial matricesM1(z), M2(z) such that

(4) holds. Then

GΛ1
(z) = P−1

1 (z)Q1(z) = (M1(z)P1(z))−1M1(z)Q1(z)

= (M2(z)P2(z))−1M2(z)Q2(z) = P−1
2 (z)Q2(z) = GΛ2

(z).

Proposition 5.5. Two input-output systems given by matrices[P1(z), Q1(z)] and
[P2(z), Q2(z)] are input-output equivalent if and only if there is a unimodular
matrixK(z) such that[P1(z), Q1(z)] = K(z)[P2(z), Q2(z)].

Proof. See [9] for the continuous-time case. The general case of arbitrary time
scale is similar.

Corollary 5.6. If two systemsΛi, i = 1, 2, are input-output equivalent, then they
are transfer equivalent.

6. CONCLUDING REMARKS

We have generalized the notion of transfer matrix and defined the transfer
equivalence for linear control systems described by input-output polynomial
equations (in delta derivative operator). Moreover, we have given acharacterization
of this property and shown what it means for the time scale of integer numbers.
A further problem to be studied is the irreducibility of the input-output equations
and its reduction if equations are reducible, and the extension of the time-scales
approach to the nonlinear case.
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Lineaarsete juhtimissüsteemide ekvivalentsus
üldistatud ajaskaalal

Zbigniew Bartosiewicz, Ülle Kotta ja Ewa Pawłuszewicz

On käsitletud lineaarseid juhtimissüsteeme üldistatud ajaskaalal, mis lisaks
pidevale ja diskreetsele ajaskaalale hõlmab ka muid võimalusi. Üldistatud ajaskaala
on ideaalne tööriist pidevate ja diskreetsete süsteemide teooria ühendamiseks.
Üldistatud ajaskaalal on defineeritud ülekandemaatriksi ja juhtimissüsteemi kaht
tüüpi ekvivalentsuse – sisend-väljund- ja ülekandeekvivalentsuse – mõisted. Antud
kontseptsioonid üldistavad vastavaid mõisteid pideva ja diskreetse ajaga süsteemide
jaoks. On esitatud tarvilikud ning piisavad tingimused süsteemide ülekande- ja
sisend-väljundekvivalentsuse kontrollimiseks. Põhiliseks tööriistaks on Laplace’i
teisendus üldistatud ajaskaalal defineeritud funktsioonide jaoks.
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