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Abstract. The notions of transfer matrix, transfer equivalence, and input-output equivalence
for linear control systems on time scales are introduced. These concepts generalize the cor-
responding continuous- and discrete-time versions. Necessary and sufficient conditions for
transfer and input-output equivalence are presented. As the main tool, an extension of the
Laplace transform for functions defined on a time scale is used.
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1. INTRODUCTION

The transfer and input-output equivalence for control systems has been studied
both in continuous- and discrete-time cases. Especially for linear systems the
definitions, properties, and results are very similar or even identical (see, for
example, [73]).

The language of time scales, created in 1988 by Stefan Hiljersems
to be an ideal tool for unifying the theories of continuous- and discrete-time
systems. One of the main concepts of this tool is the delta derivative, which is
a generalization of the ordinary (time) derivative. In case the time scale is the real
line, we get the ordinary derivative. In case the time scale is a sequence of integers,
the delta derivative of a function is the difference of its values at subsequent points.
Thus, differential as well as difference equations are naturally accommodated into
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the theory. An inverse operation to differentiation, i.e. integration, haskasa
extended into the time scale domain.

The transfer matrices of continuous- and discrete-time control systems are
defined via the Laplace transform and tdransform of the input-output equation,
respectively. The use of a time scale allows uniting both transforms into one
concept — the Laplace transform on a time scale. However, besidesastand
discrete- and continuous-time systems, this approach allows study oalketresr
cases such as, for example, time scales based on Cantor set, harmone@sumb
etc. Another approach to unify the Laplace transform gngtansform, restricted
to the case¥ = R or T = hZ, was introduced in7.

The main goal of this paper is to study the transfer and input-output dgoo&a
for linear control systems, described by the set of input-output polyrgfnia
delta derivative operation) equations. The paper is organized as $olloim
section 2 we recall the calculus on time scales. Section 3 presents the tconcep
of Laplace transform on a time scale. In Section 4 we demonstrate that two
discrete-time systems defined in terms of the forward shift operator assozityg
transfer equivalent if and only if their representations in terms of the dmw
difference operator are transfer equivalent. Section 5 defineddraasd input-
output equivalence for linear control systems on a time scale and preseetssary
and sufficient conditions for both cases. Section 6 presents some dmgclu
remarks.

2. CALCULUS ON TIME SCALES

We give here a short introduction to differential calculus on time scales Th
is a generalization of the standard differential calculus, on the one laandhe
calculus of finite differences, on the other hand. Then we describe Yeesm
operation — integration. This will allow us to solve differential equations on time
scales. The proofs and more material on this subject can be foufid in [

A time scaleT is an arbitrary nonempty closed subset of the Retf real
numbers. The standard cases compfise- R, T = Z, T = hZ for h > 0,
A={teR:t<0}U{L:n e N}. Weassume tha is a topological space with
the relative topology induced frolR. Fort € T we define
e theforward jump operatow : T—T by o(t) := inf{s € T : s > t};

e thebackward jump operatop : T—T by p(t) :=sup{s € T : s < t};
e thegraininess function : T—[0, c0) by u(t) := o(t) — t.

On the basis of defined operators we can classify points on the real line.

Namely,

e if o(t) > t, thent is calledright-scattered

e if o(t) < t, thent is calledleft-scattered

e ift <supTando(t)=t,thentis calledright-dense
e ift>infT ando(t) = t, thent is calledleft-dense



We define also the s&@ as follows:T* := T\ (p(sup T), sup T] if sup T < oo
andT* := T if supT = oo, i.e. T* contains those that are nonmaximal or left-
dense. Finally, we will denotg? := f o o for any functionf : T—R.

Example 2.1.

e If T = R, then for anyt € R, o(t) = t = p(t); the graininess function
wu(t) = 0.

o If T = Z,thenforeveryt € Z, o(t) =t + 1, p(t) = t — 1; the graininess
functionp(t) = 1.

e Letg > 1. We define the time scalg = ¢% := {¢* : k € Z} U {0}. Then
o(t) = qt, p(t) = £, andpu(t) = (¢ — 1)t forallt € T.

2.1. Delta derivative

Definition 2.2. Let f : T—R andt € T*. Thedelta derivativeof f at ¢, denoted
by f2(t), is the real numbe(provided it existswith the property that given any;
there is a neighbourhooll = (t — 6,¢ + ¢) N T (for somed > 0) such that

|(f(a(t)) = f(5)) = f2W(0(t) = 5)| < elo(t) —s|

forall s € U. Moreover we say thatf is delta differentiablen T* providedf* (¢)
exists for allt € T*.

In general, the function is not required to be differentiable.

Example 2.3.
e If T = R, thenf : R—R is delta differentiable at € R iff f2(t) =

lim,_, 2O=F6) = f'(t), i.e. iff fis differentiable in the ordinary sensetat

t—s
e If T = Z, thenf : Z—R is always delta differentiable at evetyc Z
with f2(t) = % = f(t+1)— f(t) = Af(t), whereA is the usual
forward difference operator defined by the last equation above.

o If T =¢Z thenf2(t) = % forallt € T\ {0}.

2.2. Properties of delta derivative

Proposition 2.4. Let f : T—R, g : T—R be two delta differentiable functions
defined on the time scdleand lett € T. The delta derivative satisfies the following
properties

() ift € T, thenf has at most one derivative &t

(i) (af +bg)2(t) = af>(t) + bg”(t) for any constants, b;

(i) (fg)2(t) = f2()g(t) + f(a(®)g”(t) = f(t)g™(t) + f2()g(o(t));

. . A _ A
(V) 1f g(t)g(o(1)) # 0, then(])* (¢) = LGS0,
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Remark 2.5. The delta derivative of? is ¢t + o(t). This means that the second
delta derivative of? may not exist.

A function f : T—R is calledregulated provided its (finite) right-sided limits
exist at all right-dense points ifi and its (finite) left-sided limits exist at all left-
dense points ifT. A function f : T—R is calledrd-continuous provided it is
continuous at right-dense pointsThand its (finite) left-sided limits exist at left-
dense points iff. It can be shown’] that
(i) fiscontinuous= f is rd-continuous= f is regulated,

(i) o is rd-continuous,
(iii) the graininess functiom is rd-continuous.

Proposition 2.6.If a function f : T—R has delta-derivativethen it is rd-continu-
ous.

2.3. Integration

A continuous functiory : T—R is calledpre-differentiablewith (the region of
differentiation) D, providedD c T*, T \ D is countable and contains no right-
scattered elements @f, and f is differentiable at each € D. It can be proved
that if f is regulated, then there exists a functibrthat is pre-differentiable with
the region of differentiatiorD such thatF>(t) = f(t) for all t € D. Any such
function is called a pre-antiderivative gf Then theindefinite integralof f is
defined by[ f(t)At := F(t) + C, whereC is an arbitrary constant. THeauchy
integralis

/f(t)At = F(s)— F(r) forall rseT".

A function F : T—R is called amantiderivativeof f : T—R, providedF* (t) =
f(t) holds for allt € T*.

Remark 2.7. It can be shown that every rd-continuous function has an

antiderivative. Moreover, iff(f) > O foralla < t < b and f;’f(r)Ar =0,
thenf = 0.

Example 2.8.
o If T=R, thenf;f(T)AT = f: f(7)dr, where the integral on the right-hand

side is the usual Riemann integral.

o It T=hZ h>0,thenf) f(r)Ar =Y, " f(th)hfora <b.

Remark 2.9. An antiderivative of 0 is 1, an antiderivative of 1dsbut it is ntz)t
possible to find a closed formula for an antiderivative:o&n antiderivative of;
is t+g(t) — 4 4O

t
5
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Under assumptions thate T, supT = oo, andf is an rd-continuous function
on [a, co) we define anmproper integralby

% b
/f(t)AT = blim f)Ar,
provided this limit exists.

3. LAPLACE TRANSFORM

Letp : T—C. It has been proved]that there exists a unique forward solution
of the initial value problem:® = p(t)x, x(tg) = xo for t > t.

Definition 3.1. The exponential function is a unique forward solution of the initial
value probleme® = p(t)z, z(to) = 1 for t > to. Itis denoted by, (-, ).

Example 3.2.Let p be any complex constant function.

o If T =R, thene,(t,ty) = eP(t—10),

e If > 0andT = hZ, thene,(t, to) = (1 + ph)—t)/" for t > ¢,.

o If T=¢Z, thene,(t,to) = T[] [1+ (¢—1)ps]fort > to.
s€[to,t)

Let us assume that the time scdlg is such tha) € Ty andsup Ty = .
From now on we will assume thatis a constant complex function & For any
z

function z we denote
(©0) = s

wheret € T*. If it is well defined for allt € T, thenz is calledregressivelf z is
regressive, thens, is the inverse oé, (i.e. eeq, = 1).

Definition 3.3. Assume that : To—R is regulated. The Laplace transform.ois
defined as

C{aH(z) = / 2(t)ems (o(1), 0)AL
0

for = € D{z}, whereD{z} is the set of all complex constant functions for which
the improper integral exists.

The Laplace transform is linear, that is the following holds foe D{x} N
Diy}:
L{ax + By}(z) = al{z}(z) + BL{y}(2).
Moreover, the following holds:
e L{1}(z) =1, providedlim; .. es.(t,0) = 0 holds;

z
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o L{z”}(2) = 2L{x}(2)—x(0) andL{z?"}(2) = 22L{x}(2)—zx(0)—z>(0),
providedlim; ., z(t)ec.(t,0) = 0 holds;

o L{ep(-,0)}(2) = 745, providedlim, .o ¢pe. (¢, 0) = 0 holds, where € Cis
regressive;

e Letz: T—C be aregulated function; thdh{fot z(T)AT}(2) = %E{x}(z) for
z € C\ {0} satisfyinglim;— ec.(t,0) fg xz(T)AT = 0.

Remark 3.4. The standard formula for the Laplace transform of the shifted

function

LIf(t = to)1L(t — to)] = e L(f(1)]
does not hold, in general.

Example 3.5.
e If Typ = [0,00), then the Laplace transform defined above coincides with the

standardC-transform for the continuous-time case.
o If Tg = Ny, then(z + 1)L{z}(z) = Z{z}(z + 1), whereZ{z} is the usual
Z-transform ofx for the discrete-time case.

Example 3.6. [°] Let us consider the equation
228 4522 + 62 =0, z(0)=1, 2°(0) = -5
defined on any time scal&,. Using the Laplace transform defined above, we have
0=22L{x}(2) — 2+ 5+ 5[zL{x}(2) — 1] + 6L{x}(2),

3 2

+3 z+2

L{w}e) =

and hence
x(t) = 3e_3(y,0) — 2e_s(t,0)

for all t € Ty. One can notice that the continuous- and discrete-time cases are
included within this example.

4. TRANSFER EQUIVALENCE FOR
DISCRETE-TIME SYSTEMS

In this section two descriptions of discrete-time systems are considered. The
first description is given in terms of the forward time-shift operator, arcgs#tond
in terms of the forward time-difference operator.

If T = Z, then delta derivativé\ acts on a sequendg (k)} by

(AN (k) = flk+1) = f(k),
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so it is now the forward time-difference operator. ledenote the forward time-
shift operator

(0f)(k) = f(k+1).
If id denotes the identity map, theh = § — id and, converselyy = A + id.

Usually the discrete-time linear systems are defined in terms of the time-shift
operator, either in the state-space form

dx = Ax 4 Bu,
y=Cx+ Du

or in the input-output difference equation form
T: M)y =N@)u, (1)

whereM andN are polynomial matrices in the shift operator

Assuming that sufficiently many elements of the sequerigéd), y(1),...)
and (u(0),u(1),...) are zero and applying the standagdtransform to input-
output equation (1), one can compute the standard transfer matrix ofrsg/ste

Hr(z) = M(2)"IN(2).

We say that two systemB; and I'; of the form (1) areclassically transfer
equivalentf their standard transfer matrices coincide.
Now, replacingd by A + id, we can transform the systefinto a different
representation
A: P(A)y=Q(A), )

whereP and( are certain polynomial matrices in the difference operator
Observe that transformation dfto A is invertible. Replacing\ by § —id in
(2), we can recover the systdm Let 7" denote the map that assigns the system
to a systent’, so we can write\ = 7'(T") .
For A, we can define in analogy witl][its transfer matrix and study transfer
equivalence of two systems of this form. We prove the following.

Proposition 4.1. Two discrete-time systemi§ and I'; are classically transfer
equivalent if and only if the systerii$I'y) and7'(T";) are transfer equivalent.

Proof. LetA; = T(T) : P(A)y = Qi(N)ufori = 1,2. ThenP,(A) =
M;(A +id) and@;(A) = N;(A +id) for i = 1, 2. Observe that

LA +id)") = (2 +1)"

forn € N (we treat(A + id)™ as an operator on functions). Thd$P;(A)} =
Mz(z + 1), ﬁ{QZ(A)} = NZ(Z + 1), 1=1,2, and

Ga,(2) = Pi(2)7'Qil2)
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The systemd’; andT'; are classically transfer equivalent if and only if the
standard transfer matriceldr, and Hr, are equal. This holds if and only if
the transfer matrices ok; and A, are equal, which means that and A, are
equivalent. O

Note that Proposition 4.1 for SISO systems was proved]in [

5. TRANSFER MATRIX. INPUT-OUTPUT
AND TRANSFER EQUIVALENCE

Let A be a system defined by the equation

P(A)y = Q(A)u, ®3)

wherey € R", u € R™, A is the operator of delta derivative on the time scale
T (i.e. Af = f2), P(A) andQ(A) are, respectively; x r andr x m matrices
whose entries are polynomials in operator We assume thatet P(A) # 0.

Denote the maximal degrees of the entriesfofand @ by dp and dg,
respectively. Ley®) (0) = 0fork = 0,...,dp andu®) (0) = 0fork = 0,...,dg.
Applying the Laplace transform on both sides of the input-output equaiputd
taking into account the linearity of the transform as well as the fact that

n—1
L2 Hz) = 2 Lia}(z) — 3 2 E (),
k=0

we obtain
P(2)Y (2) = Q(2)U(2),

whereY (z) andU (z) are the Laplace transforms gfandu, respectively.
As P(z) is invertible for almost alt € C, we getY (z) = P(2)71Q(2)U(2).
As usualGy(z) = P(2)~1Q(z) is calledthe transfer matriof systemA.

Definition 5.1. Two system4; andA- of the form(3) are calledtransfer equivalent
on the time scal€l if their transfer matrices are equdlas rational complex
matrices.

Obviously, transfer equivalence is an equivalence relation in the satl of
systems of the form (3).

Example 5.2.

e If T = R, the definition of transfer equivalence is the same as’]n [
(though in P] the Laplace transform is avoided and the transfer matrix is a
rational matrix with respect to the differential operator).

e WhenT = Z, our delta operator becomes the forward difference operator and
not just the forward shift as in’]. In Section 4 we showed that the two
descriptions are equivalent.
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Definition 5.3. Two systemd\; and A, of the form(3) are calledinput-output
equivalenton the time scald if they are satisfied by the same pafis u).

Let us recall that a square polynomial mat#iX(z) is called unimodular if
det K(z) is constant and different fro. Then the inverse of((z) is also a
polynomial unimodular matrix. It is known'] that K (z) is unimodular if and
only if it can be obtained from the identity matrix by finitely many elementary row
operations over the ring of polynomials in

Proposition 5.4. Two input-output systems given by matri¢s(z), Q1(z)] and
[P2(z), Q2(z)] are transfer equivalent if and only if there are polynomial matrices
M (z), Ma(z) with det M;(z) # 0,4 = 1,2, such that

Mi(2)[P1(2), Q1(2)] = M2(2)[Pa(2), Qa2(2)]. (4)

Proof. The proof is standard. Let us assume that systémandA- are transfer
equivalent, i.eGa, (2) = P (2)Q1(2) = Py ' (2)Qa2(2) = Ga,(2). Letd(z) =
det Py (2) det Py(2) and defineM;(z) := d(z)P;*(z), Ma(z) = d(2)Py*(2).
Thendet M;(z) # 0,7 = 1,2, and

Mi(2)[P1(2), Qu(2)] = [d(2)1,d(2) P (2)Qu(2)],
Mo (2)[Py(2), Q2(2)] = [d(2)1,d(2) Py ' (2)Q2(2)].
So we get (4).
Now let us assume that there exist polynomial matrites$z), Ms(z) such that
(4) holds. Then

G (2) = Pr 1 (2)Qu(2) = (Mu(2) Pi(2)) ™ Mi(2)Qu(2)
= (Ma(2)P2(2)) " M2(2)Q2(2) = Py ' (2)Qa(2) = Gy (2)- -

Proposition 5.5. Two input-output systems given by matri¢s(z), Q1(z)] and
[P2(z), Q2(z)] are input-output equivalent if and only if there is a unimodular
matrix K (z) such thaf Py (z), Q1(2)] = K(2)[P2(2), Q2(2)].

Proof. See {] for the continuous-time case. The general case of arbitrary time
scale is similar. O

Corollary 5.6. If two systems\;, i = 1,2, are input-output equivalenthen they
are transfer equivalent.

6. CONCLUDING REMARKS

We have generalized the notion of transfer matrix and defined the transfer
equivalence for linear control systems described by input-output polial
equations (in delta derivative operator). Moreover, we have giefaeacterization
of this property and shown what it means for the time scale of integer numbers
A further problem to be studied is the irreducibility of the input-output equation
and its reduction if equations are reducible, and the extension of the tines-sca
approach to the nonlinear case.
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Lineaarsete juhtimissisteemide ekvivalentsus
uldistatud ajaskaalal

Zbigniew Bartosiewicz, Ulle Kotta ja Ewa Pawtuszewicz

On Kkasitletud lineaarseid juhtimissiisteeme Uldistatud ajaskaalal, mis lisaks
pidevale ja diskreetsele ajaskaalale hdlmab ka muid v&imalusi. Uldistatud ajaskaala
on ideaalne tooriist pidevate ja diskreetsete siisteemide teooria Glhendamiseks
Uldistatud ajaskaalal on defineeritud llekandemaatriksi ja juhtimissusteemi kah
tlipi ekvivalentsuse — sisend-valjund- ja UlekandeekvivalentsuséstanbAntud
kontseptsioonid Uldistavad vastavaid mdisteid pideva ja diskreetse ajagasidste
jaoks. On esitatud tarvilikud ning piisavad tingimused stisteemide Ulekande- ja
sisend-valjundekvivalentsuse kontrollimiseks. Pdhiliseks tooriistaks olatelp
teisendus Uldistatud ajaskaalal defineeritud funktsioonide jaoks.
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