Multiwell stored energy related to austenite and particular martensitic variants as well as a dissipation pseudopotential are used to assembly a mesoscopical model for an isothermal rate-independent martensitic transformation in shape memory alloys. Theoretical results concerning numerical approximation of involved Young measures by laminates are surveyed and computational experiments are presented for CuAlNi single crystals.
1. Bhattacharya, K. Microstructure of Martensite. Why it Forms and How it Gives Rise to the Shape-Memory Effect. Oxford University Press, New York, 2003.
2. Frémond, M. and Miyazaki, S. Shape Memory Alloys. Springer, Wien, 1996.
https://doi.org/10.1007/978-3-7091-4348-3
3. James, R. D. and Hane, K. F. Martensitic transformations and shape-memory materials. Acta Mater., 2000, 48, 197–222.
https://doi.org/10.1016/S1359-6454(99)00295-5
4. Müller, S. Variational models for microstructure and phase transitions. In Calculus of Variations and Geometric Evolution Problems (Hildebrandt, S. et al., eds). Lect. Notes in Math., 1999, 1713, 85–210.
https://doi.org/10.1007/BFb0092670
5. Otsuka, K. and Shimizu, K. Morphology and crystallography of thermoelastic Cu-Al-Ni martensite analyzed by the phenomenological theory. Trans. Japan Inst. Metals, 1974, 15, 103–113.
https://doi.org/10.2320/matertrans1960.15.103
6. Pitteri, M. and Zanzotto, G. Continuum Models for Phase Transitions and Twinning in Crystals. Chapman & Hall, Boca Raton, 2003.
https://doi.org/10.1201/9781420036145
7. Roubíček, T. Models of microstructure evolution in shape memory materials. In Nonlinear Homogenization and its Application to Composites, Polycrystals and Smart Materials (Ponte Castaneda, P., Telega, J. J. and Gambin, B., eds). Kluwer, Dordrecht, 2004, 269–304.
https://doi.org/10.1007/1-4020-2623-4_12
8. Ball, J. M. and James, R. D. Fine phase mixtures as minimizers of energy. Archive Rat. Mech. Anal., 1988, 100, 13–52.
https://doi.org/10.1007/BF00281246
9. Pedregal, P. Parametrized Measures and Variational Principles. Birkäuser, Basel, 1997.
https://doi.org/10.1007/978-3-0348-8886-8
10. Huo, Y. and Müller, I. Nonequilibrium thermodynamics of pseudoelasticity. Continuum Mech. Thermodyn., 1993, 5, 163–204.
https://doi.org/10.1007/BF01126524
11. Petryk, H. Thermodynamic conditions for stability in materials with rate-independent dissipation. Phil. Trans. Roy. Soc. A, 2005, 363, 2479–2515.
https://doi.org/10.1098/rsta.2005.1584
12. Stupkiewicz, S. and Petryk, H. Modelling of laminated microstructures in stress-induced martensitic transformations. J. Mech. Phys. Solids, 2002, 50, 2303–2331.
https://doi.org/10.1016/S0022-5096(02)00029-7
13. Thamburaja, P. and Anand, L. Polycrystalline shape-memory materials: effect of crystallographic texture. J. Mech. Physics Solids, 2001, 49, 709–737.
https://doi.org/10.1016/S0022-5096(00)00061-2
14. Vivet, A. and Lexcelent, C. Micromechanical modelling for tension-compression pseudoelastic behaviour of AuCd single crystals. Euro Phys. J. A. P., 1998, 4, 125–132.
https://doi.org/10.1051/epjap:1998251
15. Levitas, V. I. The postulate of realizibility. Int. J. Eng. Sci., 1995, 33, 921–971.
https://doi.org/10.1016/0020-7225(94)00116-2
16. Mielke, A. Evolution of rate-independent systems. In Handbook of Differential Equations (Dafermos, C. and Feireisl, E., eds). Elsevier, Amsterdam, 2005, 461–559.
https://doi.org/10.1016/S1874-5717(06)80009-5
17. Mielke, A. and Theil, F. On rate-independent hysteresis models. Nonlin. Diff. Eq. Appl., 2004, 11, 151–189.
https://doi.org/10.1007/s00030-003-1052-7
18. Mielke, A., Theil, F. and Levitas, V. I. A variational formulation of rate-independent phase transform using an extremum principle. Arch. Rat. Mech. Anal., 2002, 162, 137–177.
https://doi.org/10.1007/s002050200194
19. Mielke, A. and Roubíček, T. Rate-independent model of inelastic behaviour of shape-memory alloys. Multiscale Modeling Simul., 2003, 1, 571–597.
https://doi.org/10.1137/S1540345903422860
20. Frémond, M. Non-Smooth Thermomechanics. Springer, Berlin, 2002.
https://doi.org/10.1007/978-3-662-04800-9
21. Kružík, M., Mielke, A. and Roubíček, T. Modelling of microstructure and its evolution in SMA single-crystals, in particular in CuAlNi. Meccanica, 2005, 40, 389–418.
https://doi.org/10.1007/s11012-005-2106-1
22. Roubíček, T. and Kružík, M. Mesoscopic model of microstructure evolution in shape memory alloys, its numerical analysis and computer implementation. GAMM Mitteilungen, 2006, 29, 192–214.
https://doi.org/10.1002/gamm.201490030
23. Sedlák, P., Seiner, H., Landa, M., Novák, V., Šittner, P. and Mañosa, L. l. Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy. Acta Mater., 2005, 53, 3643–3661.
https://doi.org/10.1016/j.actamat.2005.04.013
24. Novak, V., Šittner, P. and Zárubová, N. Anisotropy of transformation characteristics of Cu-base alloys. Mater. Sci. Eng. A, 1997, 234–236, 414–417.
https://doi.org/10.1016/S0921-5093(97)00175-5
25. Novak, V., Šittner, P., Vokoun, D. and Zárubová, N. On the anisotropy of martensitic transformation in Cu-based alloys. Mater. Sci. Eng. A, 1999, 273–275, 280–285.
https://doi.org/10.1016/S0921-5093(99)00355-X
26. James, R. D. and Zhang, Z. A way to search for multiferroic materials with “unlikely” combination of physical properties. In Magnetism and Structure in Functional Materials, Ch. 9 (Planes, A., Manoza, L. and Saxena, A., eds). Springer, 2005, 159–176.
https://doi.org/10.1007/3-540-31631-0_9
27. Novak, V., Šittner, P., Ignacová, S. and Černoch,~T. Transformation behavior of prism shaped shape memory alloy single crystals. Mater. Sci. Eng. A, 2006, 438–440, 755–762.
https://doi.org/10.1016/j.msea.2006.02.192