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A mesoscopical model of shape memory alloys
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Abstract. Multiwell stored energy related to austenite and particular martensitic variants
as well as a dissipation pseudopotential are used to assembly a mesoscopical model for an
isothermal rate-independent martensitic transformation in shape memory alloys. Theoretical
results concerning numerical approximation of involved Young measures by laminates are
surveyed and computational experiments are presented for CuAlNi single crystals.
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1. INTRODUCTION, STORED ENERGY, MICROSTRUCTURE,
DISSIPATION ENERGY

Shape memory alloys (SMAs) belong to the so-called smart materials which
enjoy important applications. These exhibit specific, hysteretic stress/strain/
temperature response and a so-called shape memory effect. The mechanism behind
it is quite simple: atoms tend to be arranged in several crystallographical con-
figurations having different symmetry groups: higher symmetrical one (referred to
as the austenite phase, typically cubic) has higher thermal capacity while lower
symmetrical one (called the martensite phase, typically tetragonal, orthorhombic,
or monoclinic) has lower thermal capacity and may exist, by symmetry, in several
variants (typically 3, 6, or 12, respectively). We refer to [1−7] for a thorough survey.
Here we consider only isothermal stress–strain response modelling.
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We consider a bounded Lipschitz domain Ω ⊂ R3 as a reference configuration
(canonically the stress-free austenite). Standardly, the displacement u : Ω → R3

and the deformation y : Ω→R3 are related by y(x) = x + u(x), x∈Ω. Hence the
deformation gradient is F = ∇y = I +∇u, where I ∈R3×3 denotes the identity
matrix. Mechanical response is phenomenologically described by a specific stored
energy ϕ̂ = ϕ̂(F ), assumed to have a p-polynomial growth/coercivity structure.
The frame-indifference, i.e. ϕ̂(F ) = ϕ̂(RF ) for any R ∈ SO(3), the group of
orientation-preserving rotations, requires that ϕ̂(·) in fact depends only on the
(right) Cauchy–Green stretch tensor C := FTF . We abbreviate

ϕ(·) := ϕ̂(I+ · ) . (1)

The overall free energy related to a displacement profile u is Φ(u):=
∫
Ω ϕ(∇u)dx.

Considering a (time-varying) elastic support w(t, x) on a part Γ of the boundary
∂Ω, we expand it to the stored energy G(t, u) = Φ(u) + 1

2

∫
Γ(u−w(t, ·))>B(u−

w(t, ·))dS with B>=B. Due to the multiwell character of ϕ, the deformation
gradient usually tends to develop fast spatial oscillations if it tends to minimize
the overall stored energy under given boundary conditions, see [1,4,8,9], resulting
in a microstructure that can effectively be described by so-called gradient Young
measures, which are measurably parameterized probability measures x 7→ νx on
R3×3 that can be attained by gradients in the sense limk→∞

∫
Ω g(x)v(∇uk(x)) dx

=
∫
Ω g(x)

∫
R3×3 v(A) νx(dA)dx for some sequence {uk}k∈N ⊂ W 1,p(Ω;R3) and

all g ∈L∞(Ω) and v ∈C0(R3×3), see [9]; the notation C0, Lp, W 1,p for function
spaces is standard. Let us denote the set of all such parameterized measures by
Gp(Ω;R3×3). The continuously extended (so-called relaxed) stored energy is then

Ḡ(t, u, ν) =
∫

Ω

∫

R3×3

ϕ(A) νx(dA)dx +
∫

Γ

(u−w(t, ·))>B(u−w(t, ·))
2

dS. (2)

The pair of “macroscopical” displacement u and the gradient Young measures ν
represents a quite natural mesoscopical description of the state of the body. The
“kinematically” admissible pairs (u, ν) are in

Q :=
{

(u, ν)∈W 1,p(Ω;R3)×Gp(Ω;R3×3);
∫

R3×3

Aνx(dA) = ∇u(x) for a.a. x
}

.

Within microstructure evolution due to time-varying loading w, SMAs
dissipate energy. For sufficiently slow loading, these processes are activated and
quite rate-independent, leading to a hysteretic stress–strain response. We assume
dissipative forces having a (pseudo)potential, say R, and that the energy dissipated
during the phase-transformation process depends (counting phenomenologically,
beside possible rank-one connections, with various impurities) on the starting
and final (phase) variants, only; this (simplifying) concept has been adopted also
in [10−14]. We implement this philosophy with the help of a frame-invariant “phase
indicator” being a smooth bounded function L̂ : R3×3 → RL, with L denoting the
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number of (phase) variants. Then, with L(A) := L̂(I+ A) like (1), the dissipation
potential is postulated as

R(ν) :=
∫

Ω
δ∗K(λ(x)) dx with λ(x) =

∫

R3×3

L(A) νx(dA)dx, (3)

with a convex compact K ⊂ RL determining the activation stresses, δK being its
indicator function, and δ∗K its conjugate which is, of course, homogeneous degree-
1. The quantity λ plays the role of a macroscopic volume fraction assigned through
(3) to the microstructure described by ν.

2. ENERGETIC SOLUTION, LAMINATES, NUMERICAL
APPROXIMATION

With neglecting kinetic energy and based on the minimum-stored-energy
principle competing with the maximum-dissipation (or rather realizability [15])
principle, in the scalar (hence convex) case, the desired evolution (u, ν) =
(u(t), ν(t)) : [0, T ] → Q would be governed by the doubly-nonlinear evolution
inclusion

(
0 0
0 ∂R(dν

dt )

)
+ ∂(u,ν)

[
Ḡ+δQ

]
(t, u, ν) 3 0 for t ∈ [0, T ], (4)

considered completed by an initial condition, here on λ. In the convex case, it is
equivalent (see [16,17]) to the energetic formulation, i.e. stability

∀(ũ, ν̃) ∈ Q : Ḡ
(
t, u(t), ν(t)

) ≤ Ḡ(t, ũ, ν̃) + R
(
ν(t)− ν̃

)
, (5)

together with the energy equality

G(t) + VarR(ν; s, t) = G(s)−
∫

(s,t)×Γ
(u−w)>B

∂w

∂t
dSdt (6)

to be satisfied for any 0≤ s < t≤ T , where G(t) := Ḡ(t, u(t), ν(t)) is the Gibbs
energy and VarR(ν; s, t) denotes the total variation over [s, t] of ν(·) with respect
to R from (3). The particular terms in (6) represent the stored energy at time t, the
energy dissipated by changes of the internal structure during the time interval [s, t],
the stored energy at the initial time s, and work done by external loadings during
the time interval [s, t]. In our vectorial case, the set of admissible configurations Q
is no longer convex, hence (4) has no longer a good sense and we must rely on the
energetic formulation (5)–(6) as a natural generalization.

Mathematical advantage of the energetic formulation (5)–(6) by Mielke and
Theil [16−18] is that it is free of time derivatives. The existence of thus defined
energetic solution (u, ν) : [0, T ] → Q has been shown in [19], provided Ḡ is still
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regularized by counting energy of possible spatial jumps in λ, as proposed in [20],
p. 364.

For computational implementation, additional discretization of the set Q is
necessary. The canonical approach is to apply P1-finite elements on a triangulation
(with a discretization parameter h) of a polyhedral domain Ω for discretization uh

of u and elementwise constant (= homogeneous) so-called laminates (see [9]) to
discretize ν. We implemented the second-order laminate, which leads to the four-
atomic Young measure νh, where

νh = ξ0hξ1hδF1h
+ ξ0h(1−ξ1h)δF2h

+ (1−ξ0h)ξ2hδF3h
+ (1−ξ0h)(1−ξ2h)δF4h

with
F1h = ∇uh − (1−ξ0h)ah ⊗ nh − (1−ξ1h)a1h ⊗ n1h,

F2h = ∇uh − (1−ξ0h)ah ⊗ nh + ξ1ha1h ⊗ n1h,

F3h = ∇uh + ξ0hah ⊗ nh − (1−ξ2h)a2h ⊗ n2h,

F4h = ∇uh + ξ0hah ⊗ nh + ξ2ha2h ⊗ n2h.

Here 0 ≤ ξih ≤ 1, i = 0, 1, 2, are elementwise constant. The vectors aih ∈ R3

and nih ∈ R3 are elementwise constant as well and, moreover, we may choose
|nih| = 1. Hence, the whole Young measure νh is identified by means of ∇uh and
{ξih, aih, nih}. This ensures that (uh, νh) ∈ Q. The same approximation was used,
for instance, in [21,22].

In order to find an approximate energetic solution, we consider a fully-implicit
time discretization based on the following incremental problem: take a time step
τ > 0 and let ν0

h be a given initial condition (we do not prescribe an initial condition
for uh because R depends only on ν), and, for k = 1, ..., T/τ ∈ N we define
recursively (uk

h, νk
h)k=1,...,T/τ as a solution to the minimization problems

Minimize Ḡ(kτ, uh, νh) + R(νh−νk−1
h )

subject to (uh, νh) ∈ Q with
νh elementwise constant 2nd-order laminates.



 (7)

3. COMPUTATIONAL EXPERIMENTS WITH CuAlNi

The orthorhombic martensite has 6 variants, i.e., counting also austenite,
L = 7. The frame-indifferent stored energy composed of St. Venant–Kirchhoff-
type materials for each (phase) variant is postulated as

φ̂(F ) = min
`=0,...,6

3∑

i,j,k,l=1

ε`
ijC`

ijklε
`
kl

2
+ d`, ε` =

R>
` (U>

` )−1F>FU−1
` R` − I

2
, (8)

where C` = {C`
ijkl} is the 4th-order tensor of elastic moduli, R` are rotation

matrices relating the martensitic coordinates to the reference austenite, d` are some
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offsets, and U` the distortion matrices: U0 = I corresponds to austenite while

U1 =




η2 0 0
0 η1 η3

0 η3 η1


 , U2 =




η1 0 η3

0 η2 0
η3 0 η1


 , U3 =




η1 η3 0
η3 η1 0
0 0 η2


 , (9)

while the other three, i.e. U4, ..., U6, take −η3 in place of η3. An example of Cu-
14.0wt%Al-4.2wt%Ni counts with η1 = 1.04245, η2 = 0.9178, and η3 = 0.01945.
The specific values of elastic moduli are determined from experiments; we refer to
Sedlák et al. [23]. We also use the usual Voigt’s notation, which (in a one-to-one
way) replaces C` by {C`

ij}6
i,j=1. For ` = 0, i.e. for austenite, by symmetry there

are only 3 nonvanishing elastic moduli, i.e. here C0
11 = C0

22 = C0
33 = 142.8 GPa,

C0
44 = C0

55 = C0
66 = 93.5 GPa, C0

12 = C0
23 = C0

13 = 129.7 GPa. The specific
values for martensite (in the basis of a particular variant) are C11 = 189 GPa,
C22 = 141 GPa, C33 = 205 GPa, C44 = 54.9 GPa, C55 = 19.7 GPa,
C66 = 62.6 GPa, C12 = 124 GPa, C13 = 45.5 GPa, C23 = 115 GPa. Matrices
R` in (8) are proper rotations transforming C to the basis of austenite and can be
found in [21]. The offset d` in (8) has been chosen as 3 MPa, which corresponds to
the process temperature of 312 K.

As to the construction of the phase-indicator function L : R3×3 → R7, we
take some δ > 0 small and a smooth function d : R → R such that d = 1 in a
neighbourhood of 0 and d = δ far from that neighbourhood, and put

L̂(F ) :=

{
d
(∣∣F>F − U>

` U`

∣∣2
F

)
∑6

l=0 d
(∣∣F>F − U>

l Ul

∣∣2
F

)
}6

`=0

. (10)

The set K in (3) is chosen as a simplex in R7 and specific dissipation
energies (or, equally, activation stresses) are set to be 2 MJ/m3 (= 2 MPa) for
transformations between austenite and martensite and 1 Pa for transformations
between various variants of martensite, which makes the so-called re-orientation
of martensite almost nondissipative. It is an unfortunate reality that the data for
the phenomenological dissipation model are very difficult to obtain. Moreover,
dissipation mechanisms are often not fully autonomous and, e.g., may vary within
the number of cycles in cyclical loadings. Here, the concrete value 2 MJ/m3 is
approximately fitted with experiments reported in [24], fig. 1 or [25] fig. 4, while
the value 1 Pa is to reflect that the reorientation of two martensite variants, which
are rank-one connected, is nearly nondissipative at least if there are not much
impurities in the material so that pinning effects are small (cf. also [26] for the
case of austenite/martensite transformation).

4. RESULTS OF COMPRESSION TESTS

Our specimen is a block with dimensions 4mm× 9mm× 4 mm, referring to
the stress-free austenite Ω. Its bottom is fixed by the zero-displacement Dirichlet
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boundary condition, while on its top we apply varying stress, ranging the interval
0 − 300 MPa in the vertical direction (cf. Fig. 1). The initial condition is
ν0

h = δ0, i.e., the whole specimen is in the austenite. The form of stored energy
(8) together with variants (9) reflect the case when the crystal lattice of austenite
has the orientation (001). In many applications, however, the specimen is oriented
differently, see e.g. [27]. Various material orientations can be easily implemented
by using the specific stored energy φ̄(F ) = φ̂(FRA), where RA is a rotation of
the austenite from (001). Four compression tests were performed for (0,tanα,1)-
oriented single crystal with α = 0, 10, 20, and 30 degrees (cf. Fig. 2).

It should be remarked that, in real CuAlNi single crystals, the 2H (γ′1)
orthorhombic martensite, considered in the above text, occurs in compression tests
near the (001) directions, while in directions closer to (011) or (111) another type
of martensite, namely 18R (β′1) which is monoclinic, may be observed, too. To
model it, other 12 wells would have to be included into the stored energy and
other dissipation energies would have to be specified. Beside such expansion of the
energies in the model, the simulations would expectedly be more difficult because
the optimization algorithms are computationally less efficient if the landscape of the
minimized energy in (7) has more local valleys. In the compression test presented
here, the monoclinic martensite seems, indeed, relatively negligible, as documented
in [25], fig. 5, and therefore we dared neglect it. Also, our aim has been rather to
present the modelling aspects and the ability of the model itself.

Fig. 1. Specimen, here (0,tan10◦,1)-oriented CuAlNi single crystal, under compression loading
at 200 MPa transforms from austenite (grey) to a twinned martensite (black) composed of
two variants, namely U1 and U2, cf. (9). The austenite/twinned-martensite configuration
reconstructed from computed Young measures is depicted on two chosen elements.
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Fig. 2. Stress–strain response under cyclic compression load of a (0,tanα,1)-oriented single
crystal depends substantially on α. Here α = 0◦, 10◦, 20◦, and 30◦ is depicted.
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21. Kružík, M., Mielke, A. and Roubíček, T. Modelling of microstructure and its evolution in

SMA single-crystals, in particular in CuAlNi. Meccanica, 2005, 40, 389–418.
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of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy. Acta
Mater., 2005, 53, 3643–3661.

24. Novak, V., Šittner, P. and Zárubová, N. Anisotropy of transformation characteristics of
Cu-base alloys. Mater. Sci. Eng. A, 1997, 234–236, 414–417.

25. Novak, V., Šittner, P., Vokoun, D. and Zárubová, N. On the anisotropy of martensitic
transformation in Cu-based alloys. Mater. Sci. Eng. A, 1999, 273–275, 280–285.

26. James, R. D. and Zhang, Z. A way to search for multiferroic materials with “unlikely”
combination of physical properties. In Magnetism and Structure in Functional
Materials, Ch. 9 (Planes, A., Manoza, L. and Saxena, A., eds). Springer, 2005, 159–
176.

27. Novak, V., Šittner, P., Ignacová, S. and Černoch, T. Transformation behavior of prism
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Kujumäluga sulamite mesoskoopiline mudel

Tomáš Roubíček, Martin Kružík ja Jan Koutný

On kasutatud austeniit- ja eriti martensiitfaaside multimiinimumidega energia-
potentsiaali mõistet ja dissipatiivse pseudopotentsiaali kontseptsiooni kujumäluga
sulamite isotermilisuse tasemest sõltumatu martensiitse ülemineku mesoskoopilise
mudeli koostamiseks. On üle vaadatud teoreetilised tulemused, mis käsitlevad
laminaatidega seotud Youngi mõõdete numbrilist lähendamist, ja esitatud numb-
rilise simulatsiooni tulemused CuAlNi monokristallide jaoks.
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