Results of thermomechanical modelling of moving discontinuities in heterogeneous solids are discussed. Attention is focused on the velocity of the discontinuity which cannot be calculated by means of standard thermomechanical conservation laws. The corresponding kinetic relations for phase transition fronts and straight through crack propagation are derived on the basis of the material description of continuum mechanics and the thermodynamics of discrete systems.
1. Maugin, G. A. On the universality of the thermomechanics of forces driving singular sets. Arch. Appl. Mech., 2000, 70, 31–45.
https://doi.org/10.1007/s004190070001
2. Maugin, G. A. Material Inhomogeneities in Elasticity. Chapman and Hall, London, 1993.
https://doi.org/10.1007/978-1-4899-4481-8
3. Rice, J. R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. ASME J. Appl. Mech., 1968, 35, 379–386.
https://doi.org/10.1115/1.3601206
4. Abeyaratne, R. and Knowles, J. K. Kinetic relations and the propagation of phase boundaries in solids. Arch. Rat. Mech. Anal., 1991, 114, 119–154.
https://doi.org/10.1007/BF00375400
5. Abeyaratne, R., Bhattacharya, K. and Knowles, J. K. Strain-energy functions with local minima: modelling phase transformations using finite thermoelasticity. In Nonlinear Elasticity: Theory and Application (Fu, Y. and Ogden, R. W., eds). Cambridge University Press, 2001, 33–490.
https://doi.org/10.1017/CBO9780511526466.013
6. Callen, H. B. Thermodynamics. Wiley & Sons, New York, 1960.
7. Casas-Vázquez, J. and Jou, D. Temperature in non-equilibrium states: a review of open problems and current proposals. Rep. Prog. Phys., 2003, 66, 1937–2023.
https://doi.org/10.1088/0034-4885/66/11/R03
8. LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.
https://doi.org/10.1017/CBO9780511791253
9. Muschik, W. Fundamentals of non-equilibrium thermodynamics. In Non-Equilibrium Thermodynamics with Application to Solids (Muschik, W., ed.). Springer, Wien, 1993, 1–63.
https://doi.org/10.1007/978-3-7091-4321-6_1
10. Berezovski, A. and Maugin, G. A. Simulation of thermoelastic wave propagation by means of a composite wave-propagation algorithm. J. Comp. Physics, 2001, 168, 249–264.
https://doi.org/10.1006/jcph.2001.6697
11. Berezovski, A. and Maugin, G. A. Thermoelastic wave and front propagation. J. Thermal Stresses, 2002, 25, 719–743.
https://doi.org/10.1080/01495730290074504
12. Berezovski, A. and Maugin, G. A. On the thermodynamic conditions at moving phase-transition fronts in thermoelastic solids. J. Non-Equilib. Thermodyn., 2004, 29, 37–51.
https://doi.org/10.1515/JNETDY.2004.004
13. Berezovski, A. and Maugin, G. A. Stress-induced phase-transition front propagation in thermoelastic solids. Eur. J. Mech. – A/Solids, 2005, 24, 1–21.
https://doi.org/10.1016/j.euromechsol.2004.09.004
14. Berezovski, A. and Maugin, G. A. On the velocity of a moving phase boundary in solids. Acta Mech., 2005, 179, 187–196.
https://doi.org/10.1007/s00707-005-0251-1
15. Maugin, G. A. Thermomechanics of inhomogeneous--heterogeneous systems: application to the irreversible progress of two- and three-dimensional defects. ARI, 1997, 50, 41–56.
16. Muschik, W. and Berezovski, A. Thermodynamic interaction between two discrete systems in non-equilibrium. J. Non-Equilib. Thermodyn., 2004, 29, 237–255.
https://doi.org/10.1515/JNETDY.2004.053
17. Berezovski, A. and Maugin, G. A. Impact-induced phase transition front propagation in an adiabatic bar. J. Mech. Phys. Solids (submitted).
18. Berezovski, A. and Maugin, G. A. On the propagation velocity of a straight brittle crack. Int. J. Fracture (to appear).
19. Freund, L. B. Dynamic Fracture Mechanics. Cambridge University Press, Cambridge, 1990.
https://doi.org/10.1017/CBO9780511546761