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Front dynamics in inhomogeneous solids
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Abstract. Results of thermomechanical modelling of moving discontinuities in heterogeneous
solids are discussed. Attention is focused on the velocity of the discontinuity which cannot
be calculated by means of standard thermomechanical conservation laws. The corresponding
kinetic relations for phase transition fronts and straight through crack propagation are derived
on the basis of the material description of continuum mechanics and the thermodynamics of
discrete systems.

Key words: moving discontinuities, heterogeneous solids, dynamics, kinetic relation.

1. INTRODUCTION

Fronts are moving discontinuity surfaces (or lines) dividing the medium into
distinct parts. Conservation laws for mass, linear momentum, and energy are not
sufficient for the description of moving discontinuities. Certain additional relations
are requested for isolating a unique solution among the whole set of possible ones
satisfied by given initial and boundary conditions.

The formal expression of the driving force acting on a singular set of material
points (crack tip or phase-transition front) and of the accompanying dissipation in
an irreversible progress of the set is independent of the precise material behaviour
at regular points [1]. As these sets appear to be displaced as a consequence of the
general evolution of a field solution under the time-dependent boundary conditions,
the driving forces acting on them are defined by duality with velocities of points
of the sets. The power expended by the driving force can be written as the general
bilinear form

P (f) = f ·V. (1)

Here f is the driving force, and V is the material velocity [2].
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In some cases, the observed motion of singular sets is thermodynamically
irreversible, and the force f of a non-Newtonian nature acquires a physical meaning
only through the power (Eq. (1)) it expends, as this is, in fact, its definition in a weak
formulation on the material manifold. The irreversible progress of the singularity
set is then governed by the second law of thermodynamics, that means (in terms of
temperature θS and entropy production σS at the singularity),

f ·V = θS σS ≥ 0, (2)

and the closure of the full solution of the evolution problem requires the formulation
of a kinetic law relating f and V or a hypothesis about entropy production at the
singularity.

Consider a regular (simply connected) material body in which a straight
through crack C(t) expands with material velocity VC at the crack tip. The
extension of the crack is collinear to the crack. A material force fC acting at the
crack tip (sucking the crack in the body) is none other than the energy-release rate
G (up to the velocity) [1]

G = fCVC = θC σC ≥ 0. (3)

In quasi-statics and in the absence of thermal and intrinsic dissipations, the energy-
release rate can be computed by means of the celebrated J-integral of fracture [3]
that is known to be path-independent and, therefore, provides a very convenient
estimation tool once the field solution is known. However, the velocity at the crack
tip remains undetermined and requires additional consideration.

A similar situation holds for a displacive phase-transformation front propaga-
tion. A stress-induced martensitic phase transformation in a single crystal of a
thermoelastic material occurs by the fast propagation of sharp interfaces through
the material. Following the balance of pseudomomentum [2], one can determine
the driving force acting on the interface between phases. However, as in the case
of the crack tip, this is not enough to determine the velocity of the phase-transition
front in crystalline solids.

Additional constitutive information is usually provided in the form of a kinetic
relation between the driving force and the velocity of the phase boundary. The
notion of kinetic relation is introduced by [4] following ideas from materials
science. It is well understood [5] that the kinetic relation is required because of
the non-equilibrium character of the phase transformation process. It is clear that
the notion of kinetic relation cannot by itself solve the problem of the moving front
propagation. The problem is transferred to another level, namely, to the derivation
of this kinetic relation.

The macroscopic description of moving fronts in solids (such as phase-
transition fronts or crack fronts) is based on the conventional local equilibrium
approximation. This means that all the thermodynamic quantities, including
temperature and entropy, are defined following conventional methods (see [6],
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ch. 8, 9). However, both phase-transition and crack propagation are irreversible
processes accompanied by entropy production at their moving front. Accordingly,
it is clear that the local equilibrium approximation is not sufficient to describe such
a behaviour.

It is not an easy task to develop the non-equilibrium description, because even
the notion of non-equilibrium temperature can be defined in different ways [7].
Fortunately, there is a rather nice similarity between the discrete representation of
conservation laws [8] and the thermodynamics of discrete systems [9].

As shown by [10,11], the Godunov-type numerical schemes can be reformulated
in terms of excess quantities, which appear due to the interaction between discrete
systems. The non-equilibrium jump relations at moving fronts, established by [12],
are also formulated in terms of the excess quantities.

We have proposed to determine all the needed fluxes by means of the non-
equilibrium jump relations [13]. The continuity of excess quantities across the
moving front is used for the closure of the model. This leads to the relation between
the stress jump at the discontinuity and the corresponding driving force. From this
even the velocity of a moving front can be determined [14]. As a consequence, we
obtain a thermodynamically consistent numerical algorithm which can be applied
to front propagation problems [13].

2. VELOCITY OF THE MOVING FRONT

2.1. Phase boundary

It is well known that the velocity of the phase boundary can be calculated by
means of the jump relation corresponding to the balance of linear momentum [15],
which can be represented in a one-dimensional case as

V̄N [ρ0v] + [σ] = 0, (4)

where V̄N is the material velocity of the front, ρ0 is the density of a material, v
is the particle velocity, and σ is the one-dimensional stress; rectangular brackets
denote jumps across the front.

The only difficulty is that all fields should be determined in advance, taking
into account the unknown velocity of the front.

In the admitted non-equilibrium description [16], both stress and velocity are
represented as the sum of averaged (local equilibrium) and excess parts:

σ = σ̄ + Σ, v = v̄ + V. (5)

Here σ̄ and v̄ are averaged fields and Σ and V are the corresponding excess
quantities.

At the phase boundary we apply the continuity of excess quantities [13]

[Σ] = 0, [V] = 0, (6)
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which leads to the jump relation for linear momentum in terms of averaged
quantities

V̄N [ρ0v̄] + [σ̄] = 0, (7)

and simultaneously determines the value of the jump of the averaged stress at the
phase boundary for a thermoelastic body [14]

[σ̄] = −2θ0 [α(3λ + 2µ)] . (8)

Here θ0 is the reference temperature, α is the coefficient of thermal expansion, λ
and µ are Lamé coefficients.

Having the value of the stress jump, we can derive the relation for the
determination of the velocity of the front in terms of the stress jump [17]

ρ0V̄
2
N =

[σ̄]
A[σ̄]−B

, (9)

or in terms of the driving force

ρ0V̄
2
N =

fS
AfS −B/D

, (10)

because the stress jump and the driving force are related (in the isothermal case) as
follows [17]:

fS

[
1

α(3λ + 2µ)

]
=

θ0[σ̄]
2

[
1

λ + 2µ

]
. (11)

Here fS is the driving force, A,B, and D are coefficients depending on material
properties and transformation strain.

Equation (11) is nothing else but the kinetic relation for the phase transition
front propagation.

Thus, the supplementary constitutive information needed to avoid the non-
uniqueness of the solution of the boundary-value problem is provided by means
of non-equilibrium jump relations at the moving phase boundary, which are
formulated in terms of excess quantities. The same excess quantities are used in
the construction of a finite-volume numerical scheme [10,11] that coincides with the
conservative wave propagation algorithm in the absence of phase transformation.
The continuity of the excess quantities at the phase boundary leads to the
conservation of genuine jumps at the phase boundary. As a result, a closed system
of governing equations and jump relations can be solved numerically [11].

Results of numerical simulations show that the proposed approach allows
us to capture experimental observations while corresponding to theoretical
predictions [13].

In the adiabatic formulation, the excess stresses needed for numerical
calculations are determined in the same way as in the isothermal case. The non-
equilibrium jump relations provide a possibility of establishing a kinetic relation
taking the temperature variation into account [17].
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Numerical simulations of the phase-transition front propagation in a Ni–Ti bar
show that the entropy production at the moving phase boundary and latent heat
release provide two different contributions in the temperature variation. The latter
leads to distinct kinetic behaviours of the phase boundary, depending on latent heat
release [17].

2.2. Straight brittle crack

A similar procedure can be developed for the dynamics of a crack in mode I.
The projection of the balance of linear momentum on the normal to the crack front
leads to [18]

VC [ρ0(1 + ε̄11)VC ]− [σ̄11 + Σ11] = 0, (12)

where VC is the velocity of the crack front, σ̄11 is the component of the stress tensor
normal to the crack front, and ε̄11 is the corresponding strain tensor component;
square brackets still denote jumps across the crack front.

Since we have no material behind the crack front, jumps are equal to values of
quantities in front of the crack front from which we obtain

V 2
C =

σ̄11 + Σ11

ρ0(1 + ε̄11)
. (13)

The stress at the crack front is related to the driving force fC [18]

σ̄11 + Σ11 = AfC , (14)

which is calculated by means of the J-integral as follows:

fC =
J

l
, (15)

where l is a scaling factor which has the dimension of a length.
Therefore, we will have different results for zero and non-zero excess stresses.

Assuming zero excess stress at the crack front, we come to the well-known relation
for the crack velocity [19]. For non-zero values of the excess stress at the crack
front, we arrive at more realistic expressions, as shown in [18].

We have applied the same formalism to a non-equilibrium description of the
crack propagation process as in the case of phase-transition fronts. The non-
equilibrium jump relation at the crack front allows us to establish a kinetic relation
between the driving force and the velocity of a straight-through crack. This kinetic
relation depends on the assumption concerning excess stress values at the crack
front. It is shown that by zero values of the excess stress at the crack front, the
obtained kinetic relation can be reduced to the prediction of the linear elasticity
theory. However, the adopted approach provides new possibilities. In particular,
a simple proportionality between excess and local equilibrium stresses leads to a
limiting velocity which is different from the Rayleigh wave speed.
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Katkevusfrondi dünaamika mittehomogeensetes tahkistes

Arkadi Berezovski, Jüri Engelbrecht ja Gérard A. Maugin

On analüüsitud heterogeenses tahkises liikuva katkevuse termomehaanilise
modelleerimise tulemusi. Tähelepanu on pööratud katkevuse kiirusele, mida ei
saa arvutada standardsete termomehaanika jäävusseaduste abil. On tuletatud faasi-
frondi ja sirge läbiva prao leviku kineetilised tingimused, lähtudes pideva kesk-
konna mehaanika ja diskreetsete süsteemide termodünaamika seostest.
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