ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Chemistry

Purification and properties of amine oxidase from pea seedlings; 164–171

Full article in PDF format | 10.3176/chem.2007.4.01

Authors
Kairi Kivirand, Toonika Rinken

Abstract

Amine oxidase (EC 1.4.3.6) was purified from pea (Pisum sativum) seedlings with the aim of characterizing its catalytic properties. The specific activity and selectivity of the enzyme were studied with an oxygen sensor by following the kinetics of the amine oxidation reaction, catalysed by the enzyme. The enzyme catalytic constants were calculated from the transient signal of the oxygen sensor with the help of a model proposed earlier for amperometric biosensors. The pea seedlings amine oxidase had the highest activity towards putrescine and cadaverine; a very low or zero activity was registered towards other studied amines. To characterize different steps of the purification process, we compared the activity of enzyme preparations towards 0.15 mM cadaverine. The molecular mass of the purified enzyme was 184.0 ± 2.6 kDa.


References

1. Jalkanen, S. & Salmi, M. Cell surface monoamine oxidases: enzymes in search of function. EMBO J., 2001, 20, 3893–3901. 
https://doi.org/10.1093/emboj/20.15.3893

2. Toninello, A., Pietrangeli, P., De Marchi, U., Salvi, M. & Mondovi, B. Amine oxidases in apoptosis and cancer. Biochim. Biophys. Acta (BBA) – Rev. Cancer, 2006, 1765, 1–13.
https://doi.org/10.1016/j.bbcan.2005.09.001

3. Floris, G. & Finazzi, A. Amine oxidases. In Encyclopedia of Biological Chemistry (Lennarz, W. J. & Lane, M. D., eds). Elsevier, Oxford, 2004, Vol. 1, 85–90.
https://doi.org/10.1016/B0-12-443710-9/00409-9

4. Morpurgo, L. Amine oxidase: structure and function of copper-containing amine oxidases. Inflammation Res., 2001, 50, S126–127.

5. Yagodina, O. V., Nikol¢skaya, E. B., Khovanskikh, A. E. & Kormilitsyn, B. N. Amine oxidases of microorganisms. J. Evol. Biochem. Physiol., 2002, 38, 251–258.
https://doi.org/10.1023/A:1020714607203

6. Smith, T. A. Amines in plants. Phytochemistry, 1988, 27, 1233–1234. 
https://doi.org/10.1016/0031-9422(88)80171-7

7. Brazeau, B. J., Johnson, B. J. & Wilmot, C. M. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Arch. Biochem. Biophys., 2004, 428, 22–31. 
https://doi.org/10.1016/j.abb.2004.03.034

8. McGuirl, A. M. & Dooley, M. D. Copper-containing oxidases. Curr. Opin. Chem. Biol., 1999, 3, 138–144. 
https://doi.org/10.1016/S1367-5931(99)80025-8

9. Medda, R., Padiglia, A. & Floris, G. Plant copper–amine oxidases. Phytochemistry, 1995, 39, 1–9. 
https://doi.org/10.1016/0031-9422(94)00756-J

10. Buffoni, F. & Ignesti, G. The copper-containing amine oxidases: Biochemical aspects and functional role. Mol. Genet. Metab., 2000, 71, 559–564. 
https://doi.org/10.1006/mgme.2000.3098

11. Kuznetsov, V. V., Radyukina, N. L. & Shevyakova, N. I. Polyamines and stress: Biological role, metabolism, and regulation. Russ. Plant Physiol., 2006, 53, 583–604. 
https://doi.org/10.1134/S1021443706050025

12. Cona, A., Rea, G., Angelini, R., Federico, R. & Tavladoraki, P. Functions of amine oxidases in plant development and defense. Trends Plant Sci., 2006, 11, 80–88. 
https://doi.org/10.1016/j.tplants.2005.12.009

13. Kenten, R. H. & Mann, P. J. G. The oxidation of amines by extracts of pea seedlings. Biochem. J., 1952, 50, 360–369.
https://doi.org/10.1042/bj0500360

14. Matsuda, H. & Suzuki, Y. Some properties of the amine oxidase in Vicia faba seedlings. Plant Cell Physiol., 1977, 18, 1131–1137.

15. Suresh, M. R. & Adiga, P. R. Diamine oxidase of Lathyrus sativus seedlings. Purification and properties. J. Biosci., 1979, 1, 109–124. 
https://doi.org/10.1007/BF02706323

16. Peč, P. & Frebort, I. 1,4-Diamino-2-butyne as the mechanism-based pea diamine oxidase inhibitor. Eur. J. Biochem., 1992, 209, 661–665. 
https://doi.org/10.1111/j.1432-1033.1992.tb17333.x

17. Suresh, M. R., Seethala, R. & Adiga, P. R. Diamine oxidase of Lathyrus sativus seedlings. Phytochemistry, 1976, 15, 483–485. 
https://doi.org/10.1016/S0031-9422(00)88952-9

18. Rinken, T. & Tenno, T. The dynamic signal lag of amperometric biosensors. Characterisation of glucose biosensor output. Biosens. Bioelectron., 2001, 16, 53–59.
https://doi.org/10.1016/S0956-5663(00)00133-0

19. Rinken, T. Determination of kinetic constants and enzyme activity from a biosensor transient signal. Anal. Lett., 2003, 36, 1535–1545. 
https://doi.org/10.1081/AL-120021535

20. McGowan, R. E. & Muir, R. M. Purification and properties of amine oxidase from epicotyls of Pisum sativumPlant Physiol., 1971, 47, 644–648.
https://doi.org/10.1104/pp.47.5.644

21. Srivastava, S. K. & Prakash, V. Purification and properties of pea cotyledon and embryo diamine oxidase. Phytochemistry, 1977, 16, 189–190. 
https://doi.org/10.1016/S0031-9422(00)86782-5

22. Cogoni, A., Piras, C., Farci, R., Melis, A. & Floris, G. Hordeus vulgare seedlings amine oxidase. Purification and properties. Plant Physiol., 1990, 93, 818–821.
https://doi.org/10.1104/pp.93.2.818

23. McGuirl, M., McCahon, C. D., McKeown, K. A. & Dooley, D. M. Purification and characterization of pea seedling amine oxidase for crystallization. Plant Physiol., 1994, 106, 1205–1211. 
https://doi.org/10.1104/pp.106.3.1205


Back to Issue

Back issues