Because of their antioxidative capability polyphenols and vitamins are the most important naturally occurring compounds. Several widely consumed vegetables are rich in various phenolic compounds and vitamins. In this study, such vegetables as tomato (Solanum lycopersicum), eggplant (Solanum melongena), chilli pepper (Capsicum annuum), and potato (Solanum tuberosum) of the Solanaceae family were investigated. The phenolic compounds and vitamins were separated and their composition was determined by capillary electrophoresis (CE). The total phenolic content was measured according to the Price and Butler method. In addition, the antioxidative capability of phenolic compounds was monitored and evaluated by CE using a coloured free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH).
1. Cheng, F.-C., Jen, J.-F. & Tsai, T.-H. Hydroxyl radical in living systems and its separation methods. J. Chromatogr. B, 2002, 781, 481–496.
https://doi.org/10.1016/S1570-0232(02)00620-7
2. Tsao, R. & Deng, Z. Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B, 2004, 812, 85–99.
https://doi.org/10.1016/S1570-0232(04)00764-0
3. Jàč, P., Polàšek, M. & Pospišilová, M. Recent trends in the determination of polyphenols by electromigration methods. J. Pharm. Biomed. Anal., 2006, 40, 805–814.
https://doi.org/10.1016/j.jpba.2005.12.008
4. Cieslik, E., Greda, A. & Adamus, W. Contents of polyphenols in fruit and vegetables. Food Chem., 2006, 94, 135–142.
https://doi.org/10.1016/j.foodchem.2004.11.015
5. Naczk, M. & Shahidi, F. Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J. Pharm. Biomed. Anal., 2006, 41, 1523–1542.
https://doi.org/10.1016/j.jpba.2006.04.002
6. de Rijke, E., Out, P., Niessen, W. M. A., Ariese, F., Gooijer, C. & Brinkman, U. A. Th. Analytical separation and detection methods for flavonoids. J. Chromatogr. A, 2006, 1112, 31–63.
https://doi.org/10.1016/j.chroma.2006.01.019
7. Gomez-Romero, M., Arraez-Roman, D., Segura-Carretero, A. & Fernandez-Gutierrez, A. Analytical determination of antioxidants in tomato: Typical components of the Mediterranean diet. J. Sep. Sci., 2007, 30, 452–461.
https://doi.org/10.1002/jssc.200600400
8. Leonardi, C., Ambrosino, P., Esposito, F. & Fogliano, V. Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J. Agric. Food Chem., 2000, 48, 4723–4727.
https://doi.org/10.1021/jf000225t
9. Gahler, S., Otto, K. & Böhm, V. Alteration of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. J. Agric. Food Chem., 2003, 51, 7962–7973.
https://doi.org/10.1021/jf034743q
10. Rougereau, A., Person, O. & Rougereau, G. Determination of vitamins. In Analysis of Food Constituents (Multon, J.-L., ed.). Wiley-VCH, New York, 1997, 282–292.
11. Eitenmiller, R. R. & Landen, W. O. Jr. Vitamins. In Analyzing Food for Nutrition Labeling and Hazardous Contaminants (Jeon, I. J. & Ikins, W. G., eds). Marcel Dekker, New York, 1994, 196–281.
12. Ottaway, P. B., Ottaway, B. & Associates Ltd. The stability of vitamins during food processing. In The Nutrition Handbook for Food Processors (Henry, C. J. K. & Chapman, C., eds). CRC Press, Boca Raton, and Woodhead Publishing, Abington, 2002, 247–264.
https://doi.org/10.1533/9781855736658.2.247
13. Friedman, M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicum esculentum), and jimson weed (Datura stramonium). J. Chromatogr. A, 2004, 1054, 143–155.
https://doi.org/10.1016/j.chroma.2004.04.049
14. Toor, R. K. & Savage, G. P. Changes in major antioxidant components of tomatoes during post-harvest storage. Food Chem., 2006, 99, 724–727.
https://doi.org/10.1016/j.foodchem.2005.08.049
15. Robards, K. Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J. Chromatogr. A, 2003, 1000, 657–691.
https://doi.org/10.1016/S0021-9673(03)00058-X
16. Nicoletti, I., de Rossi, A., Giovinazzo, G. & Corradini, D. Identification and quantification of stilbenes in fruits of transgenic tomato plants (Lycopersicon esculentum Mill.) by reversed phase HPLC with photodiode array and mass spectrometry detection. J. Agric. Food Chem., 2007, 55, 3304–3311.
https://doi.org/10.1021/jf063175m
17. Hanson, P. M., Yang, R.-Y., Tsou, S. C. S., Ledesma, D., Engle, L. & Lee, T.-C. Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. J. Food Comp. Anal., 2006, 19, 594–600.
https://doi.org/10.1016/j.jfca.2006.03.001
18. Luthria, D. L. & Mukhopadhyay, L. Influence of sample preparation on assay of phenolic acids from eggplant. J. Agric. Food Chem., 2006, 54, 41–47.
https://doi.org/10.1021/jf0522457
19. Whitaker, B. D. & Stommel, J. R. Distribution of hydroxycinnamic acid conjugates in fruit of commercial eggplant (Solanum melongena L.) cultivars. J. Agric. Food Chem., 2003, 51, 3448–3454.
https://doi.org/10.1021/jf026250b
20. Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H. & Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem., 2003, 51, 571–581.
https://doi.org/10.1021/jf020926l
21. Ichiyanagi, T., Kashiwada, Y., Shida, Y., Ikeshiro, Y., Kaneyuki, T. & Konishi, T. Nasunin from eggplant consists of cis-trans isomers of delphinidin 3-[4-(p-coumaroyl)-L-rhamnosyl (1→6)glycopyranoside]-5-glycopyranoside. J. Agric. Food Chem., 2005, 53, 9472–9477.
https://doi.org/10.1021/jf051841y
22. Bahorun, T., Luximon-Ramma, A., Crozier, A. & Aruoma, O. I. Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. J. Sci. Food Agric., 2004, 84, 1553–1561.
https://doi.org/10.1002/jsfa.1820
23. Suhaj, M. Spice antioxidants isolation and their antiradical activity: a review. J. Food Compos. Anal., 2006, 19, 531–537.
https://doi.org/10.1016/j.jfca.2004.11.005
24. Poyrazoğlu, E. S., Yemiş, O., Kadakal, C. & Artik, N. Determination of capsaicinoid profile of different chilli peppers grown in Turkey. J. Sci. Food Agric., 2005, 85, 1435–1438.
https://doi.org/10.1002/jsfa.2087
25. Friedma, M. Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J. Agric. Food Chem., 2006, 54, 8655–8681.
https://doi.org/10.1021/jf061471t
26. Shakya, R. & Navarre, D. A. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography. J. Agric. Food Chem., 2006, 54, 5253–5260.
https://doi.org/10.1021/jf0605300
27. Mornar-Per, I. & Füzfai, Zs. Chromatographic, capillary elelctrophoretic and capillary electrochromatographic techniques in the analysis of flavonoids. J. Chromatogr. A, 2005, 1073, 201–227.
https://doi.org/10.1016/j.chroma.2004.10.068
28. Wang, S.-P. & Huang, K.-J. Determination of flavonoids by high-performance liquid chromatography and capillary electrophoresis. J. Chromatogr. A, 2004, 1032, 273–279.
https://doi.org/10.1016/j.chroma.2003.11.099
29. Díaz, A. N., Paniagua, A. G. & Sánchez, F. G. Thin-layer chromatography and fibre-optic fluorimetric quantitation of thiamine, riboflavin and niacin. J. Chromatogr. A, 1993, 655, 39–43.
https://doi.org/10.1016/0021-9673(93)87007-9
30. Klimczak, I., Małecka, M., Szlachta, M. & Gliszczyńska-Świgĺo, A. Effect of storage on the content of polyphenols, vitamin C and antioxidant activity of orange juices. J. Food Compos. Anal., 2007, 20, 313–322.
https://doi.org/10.1016/j.jfca.2006.02.012
31. Chen, Z., Chen, B. & Yao, S. High performance chromatography/electrospray ionization–mass spectrometry for simultaneous determination of taurine and 10 water-soluble vitamins in multivitamin tablets. Anal. Chem. Acta, 2006, 569, 169–175.
https://doi.org/10.1016/j.aca.2006.03.099
32. Vaher, M. & Koel, M. Separation of polyphenols compounds extracted from plants matrices using capillary electrophoresis. J. Chromatogr. A, 2003, 990, 225–230.
https://doi.org/10.1016/S0021-9673(02)02013-7
33. Herrero, M., Ibáñez, E. & Cifuentes, A. Analysis of natural antioxidants by capillary electromigration methods. J. Sep. Sci., 2005, 28, 883–897.
https://doi.org/10.1002/jssc.200400104
34. Herreo-Martinez, J. M., Oumada, F. Z., Rosés, M., Bosch, E. & Ràfols, C. Determination of flavonoid aglycones in several food samples by mixed micellar electrokinetic chromatography. J. Sep. Sci., 2007, 30, 2493–2500.
https://doi.org/10.1002/jssc.200700124
35. Roginsky, V. & Lissi, E. A. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem., 2005, 92, 235–254.
https://doi.org/10.1016/j.foodchem.2004.08.004
36. Wang, Q., Ding, F., Zhu, N., Li, H., He, P. & Fang, Y. Determination of hydroxyl radical by capillary zone electrophoresis with amperometric detection. J. Chromatogr. A, 2003, 1016, 123–128.
https://doi.org/10.1016/S0021-9673(03)01294-9
37. Lima, M. J. Reis, Tóth, I. V. & Rangel, A. O. S. S. A new approach for the sequential injection spectrophotometric determination of the total antioxidant activity. Talanta, 2005, 68, 207–213.
https://doi.org/10.1016/j.talanta.2005.06.058
38. Stratil, P., Klejdus, B. & Kubăň, V. Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta, 2007, 71, 1741–1751.
https://doi.org/10.1016/j.talanta.2006.08.012
39. Waterman, P. G. & Mole, S. Extraction and quantification. In Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Oxford, 1994, 85–87.
40. Lenucci, M. S., Cadinu, D., Taurino, M., Piro, G. & Dalessandro, G. Antioxidant composition in cherry and high-pigment tomato cultivar. J. Agric. Food Chem., 2006, 54, 2606–2613.
https://doi.org/10.1021/jf052920c
41. Villaño, D., Fernández-Pachón, M. S., Moyá, M. L., Troncoso, A. M. & Garcia-Parrilla, M. C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 2007, 71, 230–235.
https://doi.org/10.1016/j.talanta.2006.03.050
42. Tsimogiannis, D. I. & Oreopoulou, V. Free radical scavenging and antioxidant activity of 5,7,3¢,4¢-hydroxy-substituted flavonoids. Innov. Food Sci. Emerg. Techn., 2004, 5, 523–528.
https://doi.org/10.1016/j.ifset.2004.05.006
43. Lucrecia, L., Chaillou, L. & Nazareno, M. A. New method to determine antioxidant activity of polyphenols. J. Agric. Food Chem., 2006, 54, 8397–8402.
https://doi.org/10.1021/jf061729f
44. Helmja, K., Vaher, M., Püssa, T., Kamsol, K., Orav, A. & Kaljurand, M. Bioactive components of the hop strobilus: comparison of different extraction methods by capillary electrophoresis and chromatographic methods. J. Chromatogr. A, 2007, 1155, 222–229.
https://doi.org/10.1016/j.chroma.2006.12.067
45. Vaher, M., Ehala, S. & Kaljurand, M. On-column capillary electrophoretic monitoring of rapid reaction kinetics for determination of the antioxidative potential of various phenols. Electrophoresis, 2005, 26, 990–1000.
https://doi.org/10.1002/elps.200410086
46. Trenerry, V. C. The application of capillary electrophoresis to the analysis of vitamins in food and bevereges. Electrophoresis, 2001, 22, 1468–1478.
https://doi.org/10.1002/1522-2683(200105)22:8<1468::AID-ELPS1468>3.0.CO;2-Q
47. Tang, Y. & Wu, M. A quick method for the simultaneous determination of ascorbic acid and sorbic acid in fruit juices by capillary zone electrophoresis. Talanta, 2005, 65, 794–798.
https://doi.org/10.1016/j.talanta.2004.08.013
48. Cortacero-Ramírez, S., Hernáinz-Bermúdez de Castro, M., Segura-Carretero, A., Cruces-Blanco, C. & Fernández-Gutiérrez, A. Analysis of beer components by capillary electrophoresic methods. Trends Anal. Chem., 2003, 22, 440–455.
https://doi.org/10.1016/S0165-9936(03)00704-0
49. Altria, K. D. Application of microemulsion electrokinetic chromatography to the analysis of wide range of pharmaceuticals and excipients. J. Chromatogr. A, 1999, 844, 371–386.
https://doi.org/10.1016/S0021-9673(99)00350-7
50. Altria, K. D. Background and operating parameters in microemulsion electrokinetic chromatography. Electrophoresis, 2003, 24, 315–324.
https://doi.org/10.1002/elps.200390041