Synthesis of regioisomeric cyclopentanones 3-alkyloxy-2-oxabicyclo[3.3.0]octan-6-one (overall yield up to 34%) and 3-alkyloxy-2-oxabicyclo[3.3.0]octan-7-one (overall yield up to 18%) in four steps, starting from enantiomerically pure (–)-(1S,5R)-2-oxabicyclo[3.3.0]oct-6-en-3-one is described.
1. Elkhayat, E., Edrada, R., Ebel, R., Wray, V., van Soest, R., Wiryowidagdo, S., Mohamed, M. H., Müller, W. E. G. & Proksch, P. New luffariellolide derivatives from the Indonesian sponge Acanthodendrilla sp. J. Nat. Prod., 2004, 67, 1809–1817.
https://doi.org/10.1021/np040118j
2. Trost, B. M. & Pinkerton, A. B. A three-component approach to cyclopentanoids J. Org. Chem., 2001, 66, 7714–7722.
https://doi.org/10.1021/jo010593b
3. Trost, B. M. & Pinkerton, A. B. A new strategy for cyclopentenone synthesis. Org. Lett., 2000, 2, 1601–1603.
https://doi.org/10.1021/ol005853a
4. Lopp, A., Pihlak, A., Paves, H., Samuel, K., Koljak, R. & Samel, N. The effect of 9,11-secosterol, a newly discovered compound from the soft coral Gersemia fruticosa, on the growth and cell cycle progression of various tumor cells in culture. Steroids, 1994, 59, 274–281.
https://doi.org/10.1016/0039-128X(94)90113-9
5. Jäälaid, R., Järving, I., Pehk, T., Parve, O. & Lille, Ü. Short synthesis of novel 9,11-secosterols. Nat. Prod. Lett., 2001, 15, 221–228.
https://doi.org/10.1080/10575630108041285
6. Aav, R., Kanger, T., Pehk, T. & Lopp, M. Oxidation of substituted bicyclo[4.4.0]decen-3-ones. Proc. Estonian Acad. Sci. Chem., 2001, 50, 138–146.
7. Aav, R., Kanger, T., Pehk, T. & Lopp, M. Synthesis of the AB-ring of 9,11-secosterols. Synlett, 2000, 4, 529–531.
https://doi.org/10.1055/s-2000-6562
8. Jäälaid, R., Järving, I., Pehk, T. & Lille, Ü. An advanced intermediate for the synthesis of 9,11-secosterols. Proc. Estonian Acad. Sci. Chem., 1998, 47, 39–43.
9. Jäälaid, R., Järving, I., Pehk, T. & Lille, Ü. First partial synthesis of 9,11-secosterols with the modified side chain. Proc. Estonian Acad. Sci. Chem., 1998, 47, 196–199.
10. Grieco, P. A. Cyclopentenones. Efficient synthesis of cis-jasome. J. Org. Chem., 1972, 37, 2363–2364.
https://doi.org/10.1021/jo00979a041
11. Doyle, M. P. & Catino, A. J. A short stereoselective synthesis of (+)- and (−)-2-oxabicyclo[3.3.0]oct-6-en-3-one by intramolecular carbon–hydrogen insertion catalyzed by chiral dirhodium(II) carboxamidates. Tetrahedron: Asymmetry, 2003, 14, 925–928.
https://doi.org/10.1016/S0957-4166(03)00083-1
12. Alphand, V., Archelas, A. & Furstoss, R. Microbial transformations. 16. One-step synthesis of a pivotal prostaglandin chiral synthon via a highly enantioselective microbiological Baeyer-Villiger-type reaction. Tetrahedron Lett., 1989, 30, 3663–3664.
https://doi.org/10.1016/S0040-4039(01)80476-7
13. Carnell, A. J., Roberts, S. M., Sik, V. & Willetts, A. J. Microbial oxidation of 7-endo-methylbicyclo[3.2.0]hept-2-en-6-one, 7,7-dimethylbicyclo[3.2.0]hept-2-en-6-one and 2-exo-bromo-3-endo-hydroxy-7,7-dimethylbicyclo[3.2.0]heptan-6-one using Acinetobacter NCIMB 9871. J. Chem. Soc., Perkin Trans. 1, 1991, 2385–2389.
https://doi.org/10.1039/p19910002385
14. Corey, E. J. & Mann, J. New stereocontrolled synthesis of prostaglandins via prostaglandin A2. J. Am. Chem. Soc., 1973, 95, 6832–6833.
https://doi.org/10.1021/ja00801a053
15. Rios, M.-Y., Velazquez, F. & Olivo, H. F. The Meinwald reaction of alkyl propionates. Synthesis of the C1–C9 fragment of aurisides. Tetrahedron, 2003, 59, 6531–6537.
https://doi.org/10.1016/S0040-4020(03)01064-0
16. Velazquez, F. & Olivo, H. F. Synthesis of the C1–C9 fragment of callipeltoside-A. Org. Lett., 2000, 2, 1931–1933.
https://doi.org/10.1021/ol006003y
17. Paju, A., Välimäe, T., Gulacsi, E., Gruber, L., Lopp, M. & Lille, Ü. Synthesis of (–)PGE2 methyl ester and (–)15-keto PGE2 methyl ester. Proc. Acad. Sci. Estonian SSR. Chem., 1986, 35, 138–141.
18. Pendri, Y. R., Chen, C.-P. H., Patel, S. S. et al. Process for preparing the antiviral agent entecavir. Patent WO 2004052310. 2004.
19. Kitahara, T., Nishi, T. & Mori, K. Synthesis of both the enantiomers of methyl epijasmonate. Tetrahedron, 1991, 47, 6999–7006.
https://doi.org/10.1016/S0040-4020(01)96154-X
20. Königsberger, K. & Griengl, H. Microbial Baeyer-Villiger reaction of bicyclo[3.2.0]heptan-6-ones – a novel approach to sarkomycin A. Bioorg. Med. Chem., 1994, 2, 595–604.
https://doi.org/10.1016/0968-0896(94)85006-2
21. Nagaoka, H., Miyaoka, H. & Yamada, Y. Total synthesis of (+)-halimedatrial: the absolute configuration of halimedatrial. Tetrahedron Lett., 1990, 31, 1573–1576.
https://doi.org/10.1016/0040-4039(90)80020-M
22. Miyaoka, H., Nagaoka, H., Okamura, T. & Yamada, Y. A method for synthesizing the diformylcyclopentene moiety of halimedatrial. Chem. Pharm. Bull., 1989, 37, 2882–2883.
https://doi.org/10.1248/cpb.37.2882
23. Harris, C. J. Synthesis of 2,4-diazabicyclo[3.3.0]octane-3,7-diones and 3-thioxo-2,4-diazabicyclo[3.3.0]octan-7-one by an intramolecular Michael-type reaction. Stability of 2,4-diaza-, 4-oxa-2-aza-, and 4-thia-2-azabicyclo[3.3.0]octane-3,7-diones. J. Chem. Soc., Perkin Trans. 1, 1980, 11, 2497–2502.
https://doi.org/10.1039/p19800002497