The study was carried out with coarse-grained and fine sandy oil-polluted soils in column tests and the soil was treated with the bioremediation agent SR-100. The concentrations of the hydrocarbons and anionic surfactants were determined in the fractions of soil from the column. In the experiments with the coarse-grained soil the highest concentration of residual surfactants (up to 122 mg/kg) was found in the column with unpolluted soil. The distribution of the residual surfactants was even for the fine sandy soil samples and it was slightly higher for the mixture of polluted soil and CaCO3. The results indicated degradation of surfactants in the polluted soil but the degradation did not completely remove the surfactants and leaching from soil was observed.
1. Scott, M. J. & Jones, M. N. The biodegradation of surfactants in the environment. Biochim. Biophys. Acta, 2000, 1508, 235–251.
https://doi.org/10.1016/S0304-4157(00)00013-7
2. Mezzanotte, V., Castiglioni, F., Todeschini, R. & Pavan, M. Study on anaerobic and aerobic degradation of different non-ionic surfactants. Biores. Technol., 2003, 87, 87–91.
https://doi.org/10.1016/S0960-8524(02)00211-0
3. Petruzzelli, D. & Helfferich, F. G. (eds) Migration and fate of pollutants in soil and subsoil. NATO ASI Ser. G: Ecol. Sci., 1993, 32.
https://doi.org/10.1007/978-3-642-77862-9
4. Rouse, J. D., Sabatini, D. A., Sufliata, J. M. & Harwell, J. H. Influence of surfactants on microbial degradation of organic compounds. Crit. Rev. Environ. Sci. Technol., 1994, 24, 325–370.
https://doi.org/10.1080/10643389409388471
5. Tadros, T. F. Applied Surfactants. Principles and Applications. Wiley-VCH, 2005.
https://doi.org/10.1002/3527604812
6. Karsa, D. R. Industrial Applications of Surfactants. IV. Woodhead Publishing Limited, England, 1999.
https://doi.org/10.1533/9781845698614
7. Cserháti, T., Forgács, E. & Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int., 2002, 28, 337–348.
https://doi.org/10.1016/S0160-4120(02)00032-6
8. McEvoy, J. & Giger, W. Accumulation of linear alkylbenzenesulfonate surfactants in sewage sludge. Naturwissenschaften, 1985, 72(8), 429–431.
https://doi.org/10.1007/BF00404885
9. Figge, K. & Schöberl, P. LAS and the application of sewage sludge in agriculture. Tenside Surfactants Detergents, 1989, 26, 122–128.
https://doi.org/10.1515/tsd-1989-260214
10. Al-Sabagh, A. M., Ahmed, N. S., Nassar, A. M. & Gabr, M. M. Synthesis and evaluation of some polymeric surfactants for treating crude oil emulsions. Part I: Treatment of sandy soil polluted with crude oil by monomeric and polymeric surfactants. Colloids Surfaces A: Physicochem. Eng. Aspects, 2003, 216, 9–19.
https://doi.org/10.1016/S0927-7757(02)00493-4
11. Suchanek, M., Kostal, J., Demnerova, K. & Kralova, B. Use of sodium dodecyl sulphate for stimulation of biodegradation of n-alkanes without residual contamination by the surfactant. Int. Biodeterior. Biodegrad.,2000, 45, 27–33.
https://doi.org/10.1016/S0964-8305(00)00041-X
12. Wang, S. & Mulligan, C. N. An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere, 2004, 57, 1079–1089.
https://doi.org/10.1016/j.chemosphere.2004.08.019
13. Mulligan, C. N., Yong, R. N. & Gibbs, B. F. Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol., 2001, 60, 371–380.
https://doi.org/10.1016/S0013-7952(00)00117-4
14. Roch, F. & Alexander, M. Biodegradation of hydrophobic compounds in the presence of surfactants. Environ. Toxicol. Chem., 1995, 14, 1151–1158.
https://doi.org/10.1002/etc.5620140705
15. Rosenberg, E. & Ron, E. Z. High- and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol., 1999, 52, 154–162.
https://doi.org/10.1007/s002530051502
16. Ron, E. Z. & Rosenberg, E. Biosurfactants and oil bioremediation. Curr. Opin. Biotechnol., 2002, 13, 249–252.
https://doi.org/10.1016/S0958-1669(02)00316-6
17. Kosaric, N. Biosurfactants and their application for soil bioremediation. Food Technol. Biotechnol., 2001, 39, 295–304.
18. Hua, Z., Chen, J., Lun, S. & Wang, X. Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Res., 2003, 37, 4143–4150.
https://doi.org/10.1016/S0043-1354(03)00380-4
19. Salanitro, J. P. & Diaz, L. A. Anaerobic biodegradability testing of surfactants. Chemosphere, 1995, 30, 813–830.
https://doi.org/10.1016/0045-6535(94)00443-X
20. Salanitro, J. P., Diaz, L. A. & Kravetz, L. Aerobic biodegradability of surfactants at low concentrations using an automated pressure transducer system. Chemosphere, 1995, 31, 2827–2837.
https://doi.org/10.1016/0045-6535(95)00147-Z
21. Abd-Allah, A. M. A. & Srorr, T. Biodegradation of anionic surfactants in the presence of organic contaminants. Water Res., 1998, 32, 944–947.
https://doi.org/10.1016/S0043-1354(97)00223-6
22. Zhang, C., Valsaraj, K. T., Constant, W. D. & Roy, D. Aerobic biodegradation kinetics of four anionic and nonionic surfactants at sub- and supra-critical micelle concentrations (CMCs). Water Res., 1999, 33, 115–124.
https://doi.org/10.1016/S0043-1354(98)00170-5
23. Painter, H. A., Reynolds, P. & Comber, S. Application of the headspace CO2 method (ISO 14 593) to the assessment of the ultimate biodegradability of surfactants: results of a calibration exercise. Chemosphere, 2003, 50, 29–38.
https://doi.org/10.1016/S0045-6535(02)00405-8
24. Feitkenhauer, H. & Meyer, U. Anaerobic digestion of alcohol sulfate (anionic surfactant) rich wastewater – batch experiments. Part II: Influence of the hydrophobic chain length. Biores. Technol., 2002, 82, 123–129.
https://doi.org/10.1016/S0960-8524(01)00174-2
25. Hao, J. & Hoffmann, H. Self-assembled structures in excess and salt-free catanionic surfactant solutions. Curr. Opin. Col. Interface Sci., 2004, 9, 279–293.
https://doi.org/10.1016/j.cocis.2004.06.004
26. Ajith, S., John, A. C. & Rakshit, A. K. Physicochemical studies of microemulsions. Pure Appl. Chem., 1994, 66, 509–514.
https://doi.org/10.1351/pac199466030509
27. Küchler, T. & Schnaak, W. Behavior of linear alkylbenzene sulphonates (LAS) in sandy soils with low amount of organic matter. Chemosphere, 1997, 35, 153–167.
https://doi.org/10.1016/S0045-6535(97)00147-1
28. SR-100 Series. Emulsifying Soil Remediation Agent and Structured Deactivation Technology. Technical Bulletin. Ecology Tech of California.
29. Selberg, A. & Tenno, T. Evaluation of bioremediation of oil-polluted soil using the respirometric OxiTop® method. In Proceedings of the 4th International Conference on the Establisment of Cooperation Between Companies and Institutions in the Nordic Countries and the Countries in the Baltic Sea Region. Kalmar, Sweden, November 25–27, 2003, 47–54.
https://doi.org/10.15626/Eco-Tech.2003.006
30. Koga, M., Yamamichi, Y., Nomoto, Y. et al. Rapid determination of anionic surfactants by improved spectrophotometric method using Methylene Blue. Anal. Sci., 1999, 15, 563–568.
https://doi.org/10.2116/analsci.15.563
31. Hayashi, K. A rapid determination of sodium dodecyl sulfate with methylene blue. Anal. Biochem., 1975, 67, 503–506.
https://doi.org/10.1016/0003-2697(75)90324-3
32. Standard Methods for Examination of Water and Wastewater. American Public Health Association (APHA), 16th ed., 1985.
33. n-Hexane Extractable Material (HEM) and Silica Gel Treated n-Hexane Extractable Material (SGT-HEM) by Extraction and Gravimetry (Oil and Grease and Total Petroleum Hydrocarbons). USEPA Method 1664. EPA-821-B-94-004b.
34. Canbolat, S. & Bagci, S. Adsorption of anionic surfactants in limestone medium during oil recovery. Energy Sources, 2004, 26, 869–877.
https://doi.org/10.1080/00908310490465911
35. Selberg, A. & Tenno, T. Bioremediation of oil-contaminated soil using surfactant and adsorbents. In Proceeding of Sixth International Symposium & Exhibition on Environmental Contamination in Central and Eastern Europe and the Commonwealth of Independent States. Prague, Czech Republic, 1–4 September 2003. CD-ROM.