Lithium, sodium, and potassium cation basicities were calculated for some Lewis bases using the DFT B3LYP/6-311+G**, G2, G2(MP2), G3, and CBS-QB3 methods and compared with corresponding experimental values. The best results for lithium cation basicities (LCB) were obtained with the G2, G2(MP2), and CBS-QB3 methods. So, the G2(MP2) method seems to be the best compromise between speed and accuracy for the calculations of LCBs. Also the quicker DFT B3LYP/6-311+G** level of theory can be used for quantitative prediction of LCBs, if the systematic error is taken into account. For sodium cation basicities (SCB) both G2 and G2(MP2) methods gave excellent correlation and mean absolute deviation (0.6–0.7 kcal/mol), thus G2(MP2) can be suggested for calculation of SCB. The less expensive DFT B3LYP/6-311+G** method gave also good correlation with the experiment. Potassium cation affinities can be calculated with equal accuracy using three methods: G2, G2(MP2), and B3LYP/6-311+G**.
1. Dzidic, I. & Kebarle, P. Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n–1 + H2O = M+(H2O)n. J. Phys. Chem., 1970, 74, 1466–1474.
https://doi.org/10.1021/j100702a013
2. Sunner, J. & Kebarle, P. Ion-solvent molecule interactions in the gas phase. The potassium ion and Me2SO, DMA, DMF and Me2O. J. Am. Chem. Soc., 1984, 106, 6135–6139, and references therein.
https://doi.org/10.1021/ja00333a002
3. Tissandier, M. D., Cowen, K. A., Feng, W. Y., Gundlach, E., Cohen, M. H., Earhart, A. D., Coe, J. V. & Tuttle, T. R., Jr. The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A, 1998, 102, 7787–7794.
https://doi.org/10.1021/jp982638r
4. Castleman, A. W. & Keesee, R. G. Ionic clusters. Chem. Rev., 1986, 86, 589–618.
https://doi.org/10.1021/cr00073a005
5. Wieting, R. D., Staley, R. H. & Beauchamp, J. L. Reactions of alkali ions with organic molecules in the gas phase. Low energy pathways for carbonium ion formation and novel methods for generating alkali ion complexes with .pi.- and n-donor bases. J. Am. Chem. Soc., 1975, 97, 924–926.
https://doi.org/10.1021/ja00837a057
6. Staley, R. H. & Beauchamp, J. L. Intrinsic acid-base properties of molecules. Binding energies of lithium(1+) ion to .pi.- and n-donor bases. J. Am. Chem. Soc., 1975, 97, 5920–5921.
https://doi.org/10.1021/ja00853a050
7. Woodin, R. L. & Beauchamp, J. L. Binding of lithium(1+) ion to Lewis bases in the gas phase. Reversals in methyl substituent effects for different reference acids. J. Am. Chem. Soc., 1978, 100, 501–508.
https://doi.org/10.1021/ja00470a024
8. Woodin, R. L. & Beauchamp, J. L. Bimolecular infrared radiative association reactions. Attachment of Li+ to carbonyl compounds in the gas phase. Chem. Phys., 1979, 41, 1–9.
https://doi.org/10.1016/0301-0104(79)80128-7
9. Taft, R. W., Anvia, F., Gal, J.-F., Walsh, S., Capon, M., Holmes, M. C., Hosn, K., Oloumi, G., Vasanwala, R. & Yazdani, S. Free-energies of cation molecule complex-formation and of cation solvent transfers. Pure Appl. Chem., 1990, 62, 17–23.
https://doi.org/10.1351/pac199062010017
10. McLuckey, S. A., Cameron, D. & Cook, R. G. Proton affinities from dissociations of proton-bound dimers. J. Am. Chem. Soc., 1981, 103, 1313–1317.
https://doi.org/10.1021/ja00396a001
11. Cook, R. G., Patrick, J. S., Kotiaho, T. & McLuckey, S. A. Thermochemical determinations by the kinetic method. Mass Spectrom. Rev., 1994, 13, 287–339.
https://doi.org/10.1002/mas.1280130402
12. More, M. B., Glendening, E. D., Ray, D., Feller, D. & Armentrout, P. B. Cation-ether complexes in the gas phase: bond dissociation energies and equilibrium structures of Li+[O(CH3)2]x, x = 1-4. J. Phys. Chem., 1996, 100, 1605–1614.
https://doi.org/10.1021/jp9523175
13. Rodgers, M. T. & Armentrout, P. B. Collision-induced dissociation measurements on Li+(H2O)n, n = 1-6: the first direct measurement of the Li+-OH2 bond energy. J. Phys. Chem. A, 1997, 101, 1238–1249.
https://doi.org/10.1021/jp962170x
14. Rodgers, M. T. & Armentrout, P. B. Absolute binding energies of lithium ions to short chain alcohols, CnH2n+2O, n = 1-4, determined by threshold collision-induced dissociation. J. Phys. Chem. A, 1997, 101, 2614–2625.
https://doi.org/10.1021/jp970154+
15. Lin, C.-Y. & Dunbar, R. C. Radiative association kinetics and binding energies of chromium ions with benzene and benzene derivatives. Organometallics, 1997, 16, 2691, and references therein.
https://doi.org/10.1021/om960949n
16. Pozniak, B. P. & Dunbar, R. C. Monomer and dimer complexes of coronene with atomic ions. J. Am. Chem. Soc., 1997, 119, 10439–10445, and references therein.
https://doi.org/10.1021/ja9716259
17. Chen, Q., Canell, K., Nicoll, J. & Dearden, D. V. The macrobicyclic cryptate effect in the gas phase. J. Am. Chem. Soc., 1996, 118, 6335–6344.
https://doi.org/10.1021/ja953460e
18. Cerda, B. A., Hoyau, S., Ohanessian, G. & Wesdemiotis, C. Na+ binding to cyclic and linear dipeptides. Bond energies, entropies of Na+ complexation, and attachment sites from the dissociation of Na+-bound heterodimers and ab initio calculations. J. Am. Chem. Soc., 1998, 120, 2437–2448.
https://doi.org/10.1021/ja972417j
19. Lee, S.-W., Kim, H. & Beauchamp, J. L. Salt bridge chemistry applied to gas-phase peptide sequencing: selective fragmentation of sodiated gas-phase peptide ions adjacent to aspartic acid residues. J. Am. Chem. Soc., 1998, 120, 3188–3195.
https://doi.org/10.1021/ja973467r
20. Besenhard, J. O. (ed.) Handbook of Battery Materials. VCH, New York, 1999.
https://doi.org/10.1002/9783527611676
21. Barbry, P. & Lazdunski, M. Structure and regulation of the amiloride-sensitive epithelial sodium channel. In Ion Channels, Vol. 4 (Narahashi, T., ed.). Plenum Press, New York, 1996, 115–167.
https://doi.org/10.1007/978-1-4899-1775-1_4
22. Woodin, R. L., Houle, F. A. & Goddard, W. A., III. The nature of the bonding of Li+ to H2O and NH3; ab initio studies. Chem. Phys., 1976, 14, 461–468.
https://doi.org/10.1016/0301-0104(76)80143-7
23. Abboud, J.-L. M., Yanez, M., Elguero, J., Liotard, D., Essefar, M., El Mouhtadi, M. & Taft, R. W. A comparative-study of lithium cation affinities of alcohols and ethers and proton affinities of lithium alkoxides. New J. Chem., 1992, 16, 739–745.
24. Alcami, M., Mo, O. & Yanez, M. A molecular orbital study of azole-lithium(1+) complexes. J. Phys. Chem., 1989, 93, 3929–3936.
https://doi.org/10.1021/j100347a014
25. Alcami, M., Mo, O., de Paz, J. L. G. & Yanez, M. Enhanced Li+ binding-energies of some azines – a molecular-orbital study. Theor. Chim. Acta, 1990, 77, 1–15.
https://doi.org/10.1007/BF01114648
26. Speers, P. & Laidig, K. E. Theoretical study of protonation and lithiation of first-row and 2nd-row aldehydes. J. Chem. Soc., Perkin Trans. 2, 1994, 799–806.
https://doi.org/10.1039/p29940000799
27. Alcami, M., Mo, O., Yanez, M., Anvia, F. & Taft, R. W. Experimental and theoretical study of lithium(1+) affinities of methyldiazoles. J. Phys. Chem., 1990, 94, 4796–4804.
https://doi.org/10.1021/j100375a011
28. Anvia, F., Walsh, S., Capon, M., Koppel, I. A., Taft, R. W., de Paz, J. L. G. & Catalan, J. Formation of three- and four-membered-ring structures for the lithium(1+) adducts of appropriate azines. J. Am. Chem. Soc., 1990, 112, 5095–5097.
https://doi.org/10.1021/ja00169a016
29. Alcami, M., Mo, O. & Yanez, M. Modelling intrinsic basicities: the use of the electrostatic potentials and atoms-in-molecules theory. In Molecular Electrostatic Potentials: Concepts and Applications (Murray, J. S. & Sen, K., eds). Elsevier, Amsterdam, 1996, 407–456.
https://doi.org/10.1016/S1380-7323(96)80050-1
30. Remko, M. & Šarišsky, M. Structure and gas phase stability of complexes L...M, where M = Li+, Na+ and Mg2+, and L = H2O, H2S, SiH2, NH3 and their methyl derivatives. Chem. Phys. Lett., 1998, 282, 227–232.
https://doi.org/10.1016/S0009-2614(97)01280-3
31. Siu, F. M., Ma, L. N. & Tsang, C. W. Theoretical binding energies of lithium ions to short-chain alcohols. Chem. Phys. Lett., 1998, 288, 408–412.
https://doi.org/10.1016/S0009-2614(98)00327-3
32. Glendening, E. D. & Feller, D. Cation-water interactions: the M+(H2O)n clusters for alkali metals, M = Li, Na, K, Rb, and Cs. J. Phys. Chem., 1995, 99, 3060–3067 and references therein.
https://doi.org/10.1021/j100010a015
33. Del Bene, J. Basis set and correlation effects on computed lithium ion affinities. J. Phys. Chem., 1996, 100, 6284–6287, and references therein.
https://doi.org/10.1021/jp9528424
34. Magnusson, E. Binding of polar molecules to Li+, Na+, K+, Mg2+, and Ca2+ in single-ligand adducts M+L and M2+L (L = H2O, NH3, H2S, PH3). J. Phys. Chem., 1994, 98, 12558–12569, and references therein.
https://doi.org/10.1021/j100099a018
35. Roux, B. & Karplus, M. Potential-energy function for cation-peptide interactions – an ab-initio study. J. Comp. Chem., 1995, 16, 690–704.
https://doi.org/10.1002/jcc.540160605
36. Remko, M. Gas-phase binding of Li+, Na+ and Mg2+ to formaldehyde, acetaldehyde and their silicon and sulfur analogs. A theoretical study by means of ab initio molecular orbital methods at the G2 level of theory. Chem. Phys. Lett., 1997, 270, 369–375.
https://doi.org/10.1016/S0009-2614(97)00383-7
37. Remko, M., Liedl, K. R. & Rode, B. M. Structure, reaction enthalpies, entropies, and free energies of cation-molecule complexes. A theoretical study by means of the ab initio complete basis set CBS-Q method. J. Phys. Chem. A, 1998, 102, 771–777.
https://doi.org/10.1021/jp9725801
38. Huang, H. & Rodgers, M. T. Sigma versus Pi interactions in alkali metal ion binding to azoles: thershold CID and ab initio theory studies. J. Phys. Chem. A, 2002, 106, 4277–4289.
https://doi.org/10.1021/jp013630b
39. Amunugama, R. & Rodgers, M. T. The influence of substituents on cation-pi interactions. Absolute BDE of alkali metal cation-phenol complexes by threshold CID and theoretical studies. J. Phys. Chem. A, 2002, 106, 9718–9728.
https://doi.org/10.1021/jp0211584
40. Rodgers, M. T. Substituent effects in the binging of alkali metal ions to pyridines, studied by threshold CID and ab initio theory. J. Phys. Chem. A, 2001, 105, 2374–2383.
https://doi.org/10.1021/jp004055z
41. Hill, S. E., Glendening, E. D. & Feller, D. Theoretical study of cation/ether complexes: the alkali metals and dimethyl ether. J. Phys. Chem. A, 1997, 101, 6125–6131.
https://doi.org/10.1021/jp971124+
42. Sunner, J. & Kebarle, P. Ion-solvent molecule interactions in the gas phase. The potassium ion and Me2SO, DMA, DMF and Me2O. J. Am. Chem. Soc., 1984, 106, 6135–6139.
https://doi.org/10.1021/ja00333a002
43. Feller, D., Dixon, D. A. & Nicholas, J. B. Binding enthalpies for alkali cation-benzene complexes revisited. J. Phys. Chem. A, 2000, 104, 11414–11419.
https://doi.org/10.1021/jp002631l
44. Burk, P., Koppel, I. A., Koppel, I., Kurg, R., Gal, J.-F., Maria, P.-C., Herreros, M., Notario, R., Abboud, J.-L.M., Anvia, F. & Taft, R. W. Revised and expanded scale of gas-phase lithium-cation basicities. An experimental and theoretical study. J. Phys. Chem. A, 2000, 104, 2824–2833.
https://doi.org/10.1021/jp9931399
45. Hoyau, S., Norrman, K., McMahon, T. B. & Ohanessian, G. A quantitative basis for a scale of Na+ affinities of organic and small bioorganical molecules in the gas phase. J. Am. Chem. Soc., 1999, 121, 8864–8875.
https://doi.org/10.1021/ja9841198
46. Rodgers, M. T. & Armentrout, P. B. Absolute alkali metal ion binding affinities of several azoles determined by threshold collision-induced dissociation. Int. J. Mass Spectrom., 1999, 185/186/187, 359–379.
https://doi.org/10.1016/S1387-3806(98)14134-9
47. McMahon, T. B. & Ohanessian, G. An experimental and ab initio study of the nature of the binding in gas-phase complexes of sodium ions. Chem. Eur. J., 2000, 6, 2931–2941.
https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
48. Petrie, S. An improved theoretical sodium cation affinity scale. J. Phys. Chem. A, 2001, 105, 9931–9938.
https://doi.org/10.1021/jp012291j
49. Bloomfield, J., Davies, E., Gatt, P. & Petrie, S. Extending and repositioning a thermochemical ladder: high-level quantum chemical calculations on the sodium cation affinity scale. J. Phys. Chem. A, 2006, 110, 1134–1144.
https://doi.org/10.1021/jp0554487
50. Siu, F. M., La, N. L. & Tsang, C. W. Alkali metal cation-ligand affinities: BSS correction of the Gaussian protocols. J. Chem. Phys., 2001, 114, 7045–7051.
https://doi.org/10.1063/1.1360196
51. Tsang, Y., Siu, F. M., Ho, C. S., Ma, N. L. & Tsang, C. W. Experimental validation of theoretical potassium and sodium cation affinities of amides by mass spectrometric kinetic method measurements. Rapid Commun. Mass Spectrom., 2004, 18, 345–355.
https://doi.org/10.1002/rcm.1325
52. Lau, J. K.-C., Wong, C. H. S., Ng, P. S., Siu, F. M., Ma, N. L. & Tsang, C. W. Absolute potassium cation affinities (PCAs) in the gas phase. Chem. Eur. J., 2003, 9, 3383–3396, and references therein.
https://doi.org/10.1002/chem.200204678
53. Ma, N. L., Siu, F. M. & Tsang, C. W. Interactions of alkali metal cations and short chain alcohols: effect of core size on theoretical affinities. Chem. Phys. Lett., 2000, 322, 65–72.
https://doi.org/10.1016/S0009-2614(00)00364-X
54. Kish, M. M., Ohanessian, G. & Wesdemiotis, C. The Na+ affinities of alpha-amino acids: side-chain substituent effects. Int. J. Mass Spectrom., 2003, 227, 509–524.
https://doi.org/10.1016/S1387-3806(03)00082-4
55. Gapeev, A. & Dunbar, R. C. Na+ affinities of gas phase amino acids by ligand exchange equilibrium. Int. J. Mass Spectrom., 2003, 228, 825–839.
https://doi.org/10.1016/S1387-3806(03)00242-2
56. Wong, C. H. S., Ma, N. L. & Tsang, C. W. A theoretical study of potassium cation binding to GG and AA dipeptides. Chem. Eur. J., 2002, 8, 4909–4981.
https://doi.org/10.1002/1521-3765(20021104)8:21<4909::AID-CHEM4909>3.0.CO;2-L
57. Wang, P., Wesdemiotis, C., Kapota, C. & Ohanessian, G. The sodium ion affinities of simple di-, tri-, and tetrapeptides. J. Am. Soc. Mass Spectrom., 2007, 18, 541.
https://doi.org/10.1016/j.jasms.2006.10.024
58. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. Gaussian 03, Revision C.01. Gaussian, Inc., Wallingford CT, 2004.
59. Becke, A. D. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648–5652.
https://doi.org/10.1063/1.464913
60. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B, 1988, 37, 785–789.
https://doi.org/10.1103/PhysRevB.37.785
61. Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations – a critical analysis. Can. J. Phys., 1980, 58, 1200–1211.
https://doi.org/10.1139/p80-159
62. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J. Phys. Chem., 1994, 98, 11623–11627.
https://doi.org/10.1021/j100096a001
63. Curtiss, L. A., Raghavachari, K., Trucks, G. W. & Pople, J. A. Gaussian-2 theory for molecular-energies of 1st-row and 2nd-row compounds. J. Chem. Phys., 1991, 94, 7221–7230.
https://doi.org/10.1063/1.460205
64. Curtiss, L. A., Raghavachari, K. & Pople, J. A. Gaussian-2 theory using reduced Moller-Plesset orders. J. Chem. Phys., 1993, 98, 1293–1298.
https://doi.org/10.1063/1.464297
65. Curtiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V. & Pople, J. A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys., 1998, 109, 7764–7776.
https://doi.org/10.1063/1.477422
66. Montgomery, J. A. Jr., Frisch, M. J., Ochterski, J. W. & Petersson, G. A. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys., 2000, 112, 6532–6542.
https://doi.org/10.1063/1.481224
67. Montgomery, J. A., Jr., Frisch, M. J., Ochterski, J. W. & Petersson, G. A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys., 1999, 110, 2822–2827.
https://doi.org/10.1063/1.477924
68. Foresman, J. B. & Frisch, A. Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian. Gaussian Inc., Pittsburgh, 1993.
69. Martin, J. M. L. & de Oliveira, G. Towards standard methods for benchmark quality ab initio thermochemistry – W1 and W2 theory. J. Chem. Phys., 1999, 111, 1843–1856.
https://doi.org/10.1063/1.479454
70. Parthiban, S. & Martin, J. M. L. Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. J. Chem. Phys., 2001, 114, 6014–6029.
https://doi.org/10.1063/1.1356014