ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
SEA-LEVEL CHANGES RECORDED BY CERIUM ANOMALIES IN THE LATE JURASSIC (TITHONIAN) BLACK ROCK SERIES OF QIANGTANG BASIN, NORTH-CENTRAL TIBET; pp. 18–35
PDF | doi: 10.3176/oil.2012.1.03

Authors
LAN CHEN, ANDREW TIEN-SHUN LIN, XUEJUAN DA, HAISHENG YI, LOUIS LOUNG-YIE TSAI, GUIWEN XU
Abstract

The Upper Jurassic black rock series of the Amdo area of north-central Tibet have attracted attention because of its organic-rich matter and oil seepage in the rock series. Abundant ammonites of Aulacosphinctes and Virgatosphinctes as well as bivalves including Buchia and Chlamys, are well preserved in the Qiangmuleiqu Formation of the Middle to Late Tithonian (Late Jurassic). The total rare earth elements (∑REE) abundance of the formation varies from 18.814 to 46.818 ppm and is lower than that of an average in marine shales. Inter-element correlations suggest that the shale-normalized REE patterns provide the information about the origin of sedimentary rocks (i.e., not affected by diagenesis), and can be used as a potential indicator for eustatic sea-level changes. The Ceanom values gradually increased from –0.015 to –0.238 from the lower to middle part of the series, indicating a rise in sea level. The Ceanom then dropped to –0.081, suggesting a lowering of sea level. From the middle to upper part of the section, there are two more sea-level fluctuations indicated by variations of cerium anomaly values. Thus, sea-level fluctuations occurred three times in this Late Jurassic section, with major episodes of eustatic rise took place in the lower-middle part of this section. These episodic cycles show that the sediments in the Amdo area of north-central Qiangtang basin were deposited in continental shelf or deep-water continental slope environments, which is not in agreement with the previous views that there are no deep-water sediments in Qiangtang basin. Our results call for further studies to be under­taken on Jurassic stratigraphic framework and tectono-sedimentary evolu­tion in Qiangtang basin, northern Tibet.

References

  1. Haq, B. U., Hardenbol, J., Vail, P. R. // Science. 1987. Vol. 235, No. 4793. P. 1156–1167.

  2.Nakazawa, T., Ueno, K., Kawahata, H., Fujikawa, M., Kashiwagi, K. Facies stacking patterns in high-frequency sequences influenced by long-term sea-level change on a Permian Panthalassan oceanic atoll: An example from the Akiyoshi Limestone, SW Japan // Sediment. Geol. 2009. Vol. 214, No.1–4. P. 35–48.
http://dx.doi.org/10.1016/j.sedgeo.2008.12.003

  3. Reolid, M., Nagy, J., Rodríguez-Tovar, F. J. Ecostratigraphic trends of Jurassic agglutinated foraminiferal assemblages as a response to sea-level changes in shelf deposits of Svalbard (Norway) // Palaeogeogr. Palaeocl. 2010. Vol. 293, No. 1–2. P. 184–196.
http://dx.doi.org/10.1016/j.palaeo.2010.05.019

  4. Brett, C. E., Baird, G. C., Bartholomew, A. J., De Santis, M. K., Ver Strae­ten, C. A. Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America // Palaeogeogr. Palaeocl. 2011. Vol. 304, No. 1–2. P. 21–53.
http://dx.doi.org/10.1016/j.palaeo.2010.10.009

  5. Ver Straeten, C. A., Brett, C. E., Sageman, B. B. Mudrock sequence strati­graphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin // Palaeogeogr. Palaeocl. 2011. Vol. 304, No. 1–2. P. 54–73.
http://dx.doi.org/10.1016/j.palaeo.2010.10.010

  6. Vail, P. R., Todd, R. G. Northern North Sea Jurassic unconformities, chrono­stratigraphy and sea-level changes from seismic stratigraphy // Proc. Petroleum Geology of the Continental Shelf of North-West Europe Conf., March 4–6, 1980 / Illing, L. V., Hobson, G. D. (Eds.). London: Heydon, 1981. P. 216–235.

  7. Hallam, A. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge // Palaeogeogr. Palaeocl. 2001. Vol. 167, No. 1–2. P. 23–37.
http://dx.doi.org/10.1016/S0031-0182(00)00229-7

  8. Hesselbo, S. P. Sequence stratigraphy and inferred relative sea-level change from the onshore British Jurassic // P. Geologists Assoc. 2008. Vol. 119, No. 1. P. 19–34.
http://dx.doi.org/10.1016/S0016-7878(59)80069-9

  9. Glørstad-Clark, E., Faleide, J. I., Lundschien, B. A., Nystuen, J. P. Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area // Mar. Petrol. Geol. 2010. Vol. 27, No. 7. P. 1448–1475.
http://dx.doi.org/10.1016/j.marpetgeo.2010.02.008

10. Egenhoff, S., Cassle, C., Maletz, J., Frisk, Å. M., Ebbestad, J. O. R., Stübner, K. Sedimentology and sequence stratigraphy of a pronounced Early Ordovician sea-level fall on Baltica-The Bjørkåsholmen Formation in Norway and Sweden // Sediment. Geol. 2010. Vol. 224, No. 1–4. P. 1–14.
http://dx.doi.org/10.1016/j.sedgeo.2009.12.003

11. Nielsen, A. T., Schovsbo, N. H. The Lower Cambrian of Scandinavia: Depositional environment, sequence stratigraphy and palaeogeography // Earth-Science Reviews. 2010. Vol. 107. No. 3–4. P. 207–310.

12. Fielding, C. R., Browne, G. H., Field, B., Florindo, F., Harwood, D. M., Krissek, L. A., Levy, R. H., Panter, K. S., Passchier, S., Pekar, S. F. Sequence stratigraphy of the ANDRILL AND-2A drillcore, Antarctica: A long-term, ice-proximal record of Early to Mid-Miocene climate, sea-level and glacial dynamism // Palaeogeogr. Palaeocl. 2011. Vol. 305, No. 1–4. P. 337–351.
http://dx.doi.org/10.1016/j.palaeo.2011.03.026

13. Van Daele, M., Van Welden, A., Moernaut, J., Beck, C., Audemard, F., Sanchez, J., Jouanne, F., Carrillo, E., Malavé, G., Lemus, A., De Batist, M. Reconstruction of Late-Quaternary sea- and lake-level changes in a tectonically active marginal basin using seismic stratigraphy: The Gulf of Cariaco, NE Venezuela // Mar. Geol. 2011. Vol. 279, No. 1–4. P. 37–51.
http://dx.doi.org/10.1016/j.margeo.2010.10.011

14. Wright, J., Schrader, H., Holser, W. T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite // Geochim. Cosmochim. Acta. 1987. Vol. 51, No. 3. P. 631–644.
http://dx.doi.org/10.1016/0016-7037(87)90075-5

15. Wilde, P., Quinby-Hunt, M. S., Erdtmann, B.-D. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies // Sediment. Geol, 1996. Vol. 101, No. 1–2. P. 43–53.
http://dx.doi.org/10.1016/0037-0738(95)00020-8

16. Harding, I. C., Charles, A. J., Marshall, J. E. A., Pälike, H., Roberts, A. P., Wil­son, P. A., Jarvis, E., Thorne, R., Morris, E., Moremon, R., Pearce, R. B., Akbari, S. Sea-level and salinity fluctuations during the Paleocene-Eocene thermal maximum in Arctic Spitsbergen // Earth Planet. Sc. Lett. 2011. Vol. 303, No. 1–2. P. 97–107.

17. Feng, H. Z., Erdtmann, B.-D., Wang, H. F. Early Paleozoic whole-rock Ce anomalies and secular eustatic changes in the Upper Yangtze region // Sci. China Ser. D. 2000. Vol. 43, No. 3. P. 328–336.
http://dx.doi.org/10.1007/BF02906829

18. Shields, G., Stille, P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites // Chem. Geol. 2001. Vol. 175, No. 1–2. P. 29–48.
http://dx.doi.org/10.1016/S0009-2541(00)00362-4

19. Pattan, J. N., Pearce, N. J. G., Mislankar, P. G. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin // Chem. Geol. 2005. Vol. 221, No. 3–4. P. 260–278.
http://dx.doi.org/10.1016/j.chemgeo.2005.06.009

20. Kakuwa, Y., Matsumoto, R. Cerium negative anomaly just before the Permian and Triassic boundary event – The upward expansion of anoxia in the water column // Palaeogeogr., Palaeocl. 2006. Vol. 229, No. 4. P. 335–344.
http://dx.doi.org/10.1016/j.palaeo.2005.07.005

21. Class, C., le Roex, A. P. Ce anomalies in Gough Island lavas – Trace element characteristics of a recycled sediment component // Earth Planet. Sc. Lett. 2008. Vol. 265, No. 3–4. P. 475–486.

22. Tian, Y. L. Ce anomaly as geochemical tracers for redox condition in carbonates of Sanya Formation, Qiongdongnan Basin // Offshore Oil. 2009. Vol. 30, No. 1. P. 21–25 [in Chinese with English abstract].

23. Kerrich, R., Said, N. Extreme positive Ce-anomalies in a 3.0 Ga submarine volcanic sequence, Murchison Province: Oxygenated marine bottom waters // Chem. Geol. 2011. Vol. 280, No. 1–2. P. 232–241.
http://dx.doi.org/10.1016/j.chemgeo.2010.11.012

24. Schulte, P., Scheibner, C., Speijer, R. P. Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene-Eocene Thermal Maximum in the Dababiya Quarry section, Egypt // Chem. Geol. 2011. Vol. 285, No. 1–4. P. 167–183.
http://dx.doi.org/10.1016/j.chemgeo.2011.04.004

25. Liu, Y.-G., Miah, M. R. U., Schmitt, R. A. Cerium: A chemical tracer for paleo-oceanic redox conditions // Geochem. Cosmochim. Acta. 1988. Vol. 52, No. 6. P. 1361–1371.

26. Kato, Y., Nakao, K., Isozaki, Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change // Chem. Geol. 2002. Vol. 182, No. 1. P. 15–34.
http://dx.doi.org/10.1016/S0009-2541(01)00273-X

27. Girard, C., Lécuyer, C. Variations in Ce anomalies of conodonts through the Frasnian/Famennian boundary of Poland (Kowala – Holy Cross Mountains): implications for the redox state of seawater and biodiversity // Palaeogeogr., Palaeocl. 2002. Vol. 181, No. 1. P. 299–311.
http://dx.doi.org/10.1016/S0031-0182(01)00482-5

28. Murray, R. W., Buchholtz ten Brink, M. R., Jones, D. L., Gerlach, D. C., Price Russ, G. Rare earth elements as indicators of different marine depositional environments in chert and shale // Geology. 1990. Vol. 18, No. 3. P. 268–271.

29. Elderfield, H., Greaves, M. J. The rare earth elements in seawater // Nature. 1982. Vol. 296. P. 214–219.

30. Wilde, P. Model of progressive ventilation of the late Precambrian-early Paleozoic Ocean // Am. J. Sci. 1987. Vol. 287. P. 442–459.
http://dx.doi.org/10.2475/ajs.287.5.442

31. Li, Y. T., Luo, J. N., Lu, H. N., Xu, W. K., Tong, Z. Y., Wu, R. Z. Qianghai-Tibet Stratigraphy. – Beijing: Science Publishing House, 2001. P. 1–400 [in Chinese].

32. Yin, J. R., Enay, R. Tithonian ammonoid biostratigraphy in eastern Himalayan Tibet // Geobios-Lyon. 2004. Vol. 37, No. 5. P. 667–686.

33. Yin, J. R., Sun, L. X, Bai, Z. D., Xu, D. B., Zhang, X. J. New data on the Jurassic ammonites from the Shuanghu and Amdo areas, with comments on the Jurassic strata in north Tibet // Journal of Stratigraphy. 2005. Vol. 29, No. 1. P. 7–15 [in Chinese with English abstract].

34. Yi, H. S., Wang, C. S., Lin, J. H., Shi, Z. Q., Chen, L., Wu, X. H., Wei, Q. L., Zhang, X. Q. Jurassic ammonite fauna in the Amdo area, northern Tibet and its paleogeographic implications // Geological Bulletin of China. 2005. Vol. 24, No. 1. P. 41–47 [in Chinese with English abstract].

35. Chen, L., Yi, H. S., Zhong, H., Hu., R. Z., Yin, J. R., Yang, J. K. The calcareous nannofossils record and its geological significance in the Jurassic black shales from the Qiangtang Basin, northern Tibetan Plateau // Prog. Nat. Sci. 2006. Vol. 16, Supplement 1. P. 264–273.

36. Jiang, Z. T. The problems of Jurassic stratigraphy in Qiangtang district. In CGOXP Editorial Committee Ministry of Geology and Mineral Resources PRC. Contribution to the geology of the Qinghai-Xizang (Tibet) Plateau (No. 3). – Beijing: Geological Publishing House, 1983. P. 87–112 [in Chinese].

37. Enay, R., Cariou, E. Ammonite faunas and palaeobiogeography of the Himalayan belt during the Jurassic: Initiation of a Late Jurassic austral ammonite fauna // Palaeogeogr. Palaeocl. 1997. Vol. 134, No. 1–4. P. 1–38.
http://dx.doi.org/10.1016/S0031-0182(96)00157-5

38. Cecca, F. Palaeobiogeography of Tethyan ammonites during the Tithonian (latest Jurassic)  // Palaeogeogr. Palaeocl. 1999. Vol. 147, No. 1–2. P. 1–37.
http://dx.doi.org/10.1016/S0031-0182(98)00149-7

39. Oloriz, F., Tintori, A. Upper Jurassic (Tithonian) ammonites from the Spiti Shales in Western Zanskar (NW Himalayas) // Riv. Ital. Paleontol. S. 1990. Vol. 96. No. 4. P. 461–486.

40. Yin, J. R., Fürsich, F. T. Dispersal events of Triassic-Jurassic boundary faunas, and paleoenvironment of Tibetan Himalaya // Sci. China Ser. D. 2009. Vol. 52, No. 12. P. 1993–2000.
http://dx.doi.org/10.1007/s11430-009-0162-4

41. Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., Chenery, S. P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials // Geostandard. Newslett. 1997. Vol. 21, No. 1. P. 115–144.
http://dx.doi.org/10.1111/j.1751-908X.1997.tb00538.x

42. Westgate, J. A., Shane, P. A. R., Pearce, N. G. J., Perkins, W. T., Korisettar, R., Chesner, C. A.,Willams, M. A., Acharyya, S. K. All Toba tephra occurrences across peninsular India belong to the 75000 yr B.P. eruption // Quaternary Res. 1998. Vol. 50, No. 1. P. 107–112.

43. Liang, Q., Jing, H., Grégoire, D. C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry // Talanta. 2000. Vol. 51, No. 3. P. 507–513.

44. Turekian, K. K., Wedepohl, K. H. Distribution of the elements in some major units of the earth’s crust // Geol. Soc. Am. Bull. 1961. Vol. 72, No. 2. P. 175–192.
http://dx.doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

45. McLennan, S. M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes // Rev. Mineral. Geochem. 1989. Vol. 21, No. 1. P. 169–200.

46. Mazumdar, A., Banerjee, D. M., Schidlowski, M., Balaram, V. Rare-earth ele­ments and stable isotope geochemistry of early Cambrian chert–phosphorite assemblages from the Lower Tal Formation of the Krol Belt (Lesser Himalaya, India) // Chem. Geol. 1999. Vol. 156, No. 1–4. P. 275–297.
http://dx.doi.org/10.1016/S0009-2541(98)00187-9

47. Morad, S., Felitsyn, S. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: implication for the Cambrian oceanic anoxia and phospho­genesis // Sediment. Geol. 2001. Vol. 143, No. 3–4. P. 259–264.
http://dx.doi.org/10.1016/S0037-0738(01)00093-8

48. Bau, M., Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Suergroup, South Africa // Pre­cambrian Res. 1996. Vol. 79, No. 1–2, P. 37–55.
http://dx.doi.org/10.1016/0301-9268(95)00087-9

49. Taylor, S. R., McLennan, S. M. The Continental Crust: its Composition and Evolution. – Oxford: Blachwell, 1985. pp. 312.

50. Guo, Q. J., Shields, G. A., Liu, C. Q., Strauss, H., Zhu, M. Y., Pi, D. H., Gold­berg, T., Yang, X. L. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian // Palaeogeogr. Palaeocl. 2007. Vol. 254, No. 1–2. P. 194–216.
http://dx.doi.org/10.1016/j.palaeo.2007.03.016

51. Yang, J. D., Sun, W. G., Wang, Z. Z., Xue, Y. S., Tao, X. C. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater? // Precambrian Res. 1999. Vol. 93, No. 2–3. P. 215–233.
http://dx.doi.org/10.1016/S0301-9268(98)00092-8

52. Yin, J. R., Wan, X. Q. Jurassic ammonite morphotypes as water-depth indicator of Tethys-Himalaya sea //  Acta of Palaeontological Sinica. 1996. Vol. 35, No. 6. P. 734–751 [in Chinese with English abstract].

53. Hallam,  A. A re-evaluation of Jurassic eustasy in the light of new data and the revised Exxon curve //  Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A., van Wagoner, J. C. (Eds.) / Sea-Level Changes: An Integrated Approach. - SEPM Special Publication, 1988. Vol. 42. P. 261–273.

54. Fan, H. P., Yang, J. Q., Zhang, P. Late Jurassic strata in northern Tibet // Journal of Stratigraphy. 1988. Vol. 12, No. 1. P. 66–70 [in Chinese].

55. Yong, Y. Y., Luo, J. N., Yu, Q. Report of investigation on petroleum geology in the Eastern Manalaiqin-Shuijinkuan-Xijinwulanhu area, Qiangtang basin (Internal data). 1995 [in Chinese].

56. Fu, X. G., Wang, J., Qu, W. J., Duan, T. Z., Du, A. D., Wang, Z. J., Liu, H. Re-Os (ICP-MS) dating of marine oil shale in the Qiangtang basin, Northern Tibet, China // Oil Shale. 2008. Vol. 25. No. 1. P. 47–55.

57. Fu, X. G., Wang, J., Tan, F. W., Zeng, Y. H. Sedimentological investigations of the Shengli River-Changshe Mountain oil shale (China): relationships with oil shale formation // Oil Shale. 2009. Vol. 26. No. 3. P. 373–381.

Back to Issue