ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
AGEING OF KUKERSITE THERMOBITUMEN; pp. 4–18
PDF | doi: 10.3176/oil.2011.1.02

Authors
J. SOKOLOVA, L. TIIKMA, M. BITYUKOV, Ille Johannes
Abstract

Ageing of the mix of thermobitumen and oil (TBO) formed at low-tempera­ture pyrolysis of kukersite in autoclaves was studied, and the effect of pyro­lysis conditions on the share of fractions soluble in hexane, benzene and tetrahydrofurane was described. The results reveal a decrease in the total weight of TBO and solid residue at storage. During a month of ageing in open air the additional weight loss of the initial organic matter reaches 10-15%. At that, the yield of TBO decreases and that of the solid residue increases. The fractions of TBO soluble in hexane (maltenes + oil) and in benzene (asphaltenes) decrease, and the fraction soluble in tetrahydrofurane (pre-asphaltenes) increases.

   The initial yields of hexane and benzene solubles depend on the degree of TBO secondary cracking determined by the pyrolysis conditions. The share of the fraction soluble in hexane increases with pyrolysis temperature and duration and attains 40–50% from the initial organic matter on account of decomposition of asphaltenes concurred with decrease in the total yield of TBO to 60–70% because of gas and coke formation.
References

  1. Luik, H., Palu, V., Bitjukov, M., Luik, L., Kruusement, K., Tamvelius, H., Pryadka, N. Lique­faction of Estonian kukersite oil shale kerogen with selected superheated solvents in static conditions // Oil Shale. 2005. Vol. 22, No. 1. P. 25–36.

  2. Luik, H., Luik, L. Extraction of fossil fuels with sub- and supercritical water // Energ. Source. 2002. Vol. 23, No. 5. P. 449–459.
doi:10.1080/009083101300058462

  3. Zaidentsal, A. L., Soone, J. H., Muoni, R. T. Yields and properties of thermal bitumen obtained from combustible shale // Solid Fuel Chem. 2008. Vol. 42, No. 2. P. 74–79.

  4. Tiikma, L., Zaidentsal, A., Tensorer, M. Formation of thermobitumen from oil shale by low-temperature pyrolysis in an autoclave // Oil Shale. 2007. Vol. 24, No. 4. P. 535–546.

  5. Tiikma, L., Johannes, I., Luik, H., Zaidentsal, A., Vink, N. Thermal dissolution of Estonian oil shale // J. Anal. Appl. Pyrol. 2009. Vol. 85, No. 1–2. P. 502–507.
doi:10.1016/j.jaap.2008.09.009

  6. Tiikma, L., Sokolova, Yu., Vink, N. Effect of the concentration of organic matter on the yield of thermal bitumen from Baltic oil shale Kukersite // Solid Fuel Chem. 2010. Vol. 44, No. 2. P. 89–93.

  7. Johannes, I., Zaidentsal, A. Kinetics of low-temperature retorting of kukersite // Oil Shale.2008. Vol. 25, No. 4. P. 412–425.

  8. Johannes, I., Tiikma, L., Zaidentsal, A., Luik, L. Kinetics of kukersite low-tem­perature pyrolysis in autoclaves // J. Anal. Appl. Pyrol. 2009. Vol. 85, No. 1–2. P. 508–513.
doi:10.1016/j.jaap.2008.07.005

  9. Johannes, I., Tiikma, L., Zaidentsal, A. Comparison of the thermobituminization kinetics of Baltic oil shale in open retorts and autoclaves // Oil Shale. 2010. Vol. 26, No. 1. P. 17–25.

10. Herod, A. A., Bartle, K. D., Kandiyoti, R. Characterization of heavy hydro­carbons by chromatographic and mass spectrometric methods: An overview // Energ. Fuel. 2007. Vol. 21, No. 4. P. 2176–2203.

11. Siddiqui, M. N., Ali, M. F. Studies on the ageing behaviour of the Arabian asphalts // Fuel. 1999. Vol. 78, No. 9. P. 1005–1015.

12. Leseur, D. The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification // Adv. Colloid Interface Sci. 2009. Vol. 145, No. 1–2. P. 42–82.
doi:10.1016/j.cis.2008.08.011

13. Mastrofini, D., Scarsella, M. The application of rheology to the evaluation of bitumen ageing // Fuel. 2000. Vol. 79, No. 9. P. 1005–1015.

14. Scarsella, M., Mastrofini, D., Barré, L., Espinat, D., Fenistein, D. Petroleum heavy ends stability: Evolution of residues macrostructure by ageing // Energ. Fuel. 1999. Vol. 13, No. 3. P. 739–747.

15. Lu, X., Isacsson, U. Effect of ageing on bitumen chemistry and rheology // Constr. Build. Mater. 2002. Vol. 16, No. 1. P. 15–22.
doi:10.1016/S0950-0618(01)00033-2

16. Lamontagne, L., Dumas, P., Mouillet, V., Kister, J. Comparison by Fourier trans­form infrared (FTIR) spectroscopy of different ageing techniques: applica­tion to road bitumens // Fuel. 2001. Vol. 80, No. 4. P. 483–488.

17. Masmoudi, H., Dréau, Y. L., Piccerelle, P., Kister, J. The evaluation of cosmetic and pharmaceutical emulsions aging process using classical techniques and a new method: FTIR // Int. J. Pharm. 2005. Vol. 289, No. 1–2. P. 117–131.
doi:10.1016/j.ijpharm.2004.10.020

18. Begon, V., Suelves, I., Herod, A. A., Dugwell, D. R., Kandiyoti, R. Structural effects of sample ageing in hydrocracked coal liquefaction extracts // Fuel. 2000. Vol. 79, No. 12. P. 1423–1429.

19. Evdokimov, I. N., Eliseev, Y. N., Akhmetov, B. R. Assembly of asphaltenes molecular aggregates as studied by near-UV/visible spectroscopy: II. Con­centra­tion dependencies of absorptivities // J. Petrol. Science. Eng. 2003. Vol. 37, No. 3–4. P. 145–152.
doi:10.1016/S0920-4105(02)00354-6

20. Castillo, J., Hung, J., Fernández, A., Mujica, V. Nonlinear optical evidences of aggrega­tion in asphaltene-toluene solutions // Fuel. 2001. Vol. 80, No. 9. P. 1239–1243.

21. Hung, J., Castillo, J., Reyes, A. Kinetics of asphaltenes aggregation in toluene-heptane mixtures studied by confocal microscopy // Energ. Fuel. 2005. Vol. 19, No. 3. P. 898–904.

22. Acevedo, S., Ranaudo, M. A., Pereira, J. C., Castillo, J., Fernández, A., Pérez, P., Caetano, M. Thermo-optical studies of asphaltene solutions: evidence for solvent-solute aggregate formation // Fuel. 1999. Vol. 78, No. 9. P. 997–1003.

23. Redelius, P. Bitumen solubility model using Hansen solubility parameter // Fuel. 2004. Vol. 18, No. 4. P. 1087–1092.

24. Yang, P., Cong, Q., Liao, K. J. Application of solubility parameter theory in evaluating the aging resistance of paving asphalts // Petrol. Sci. Technol. 2003. Vol. 21, No. 11–12. P. 1843–1850.
doi:10.1081/LFT-120024565

25. Mohan, D., Pittman, Jr., C. U., Steele, P. H. Pyrolysis of wood/biomass for bio-oil: A critical review // Energ. Fuel. 2006. Vol. 20, No. 3. P. 848–889.

26. Michels, R., Langlois, E., Ruau, O., Mansuy, L., Elie, M., Landais, P. Evolution of asphaltenes during artificial maturation: a record of the chemical process // Energ. Fuel. 1996. Vol. 10. P. 39–48.

27. Nandi, B. N., Belinko, K., Ciavaglia, L. A., Pruden, B. B. Formation of coke during thermal hydrocracking of Athabasca bitumen // Fuel. 1978. Vol. 57, No. 5. P. 265–268.

28. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen as evaluated by 13C MAS NMR spectra // Fuel. 2003. Vol. 82, No. 7. P. 799–804.

29. Kask, K. A. About bituminizing of kerogen of oil shale-kukersite. Report I // Trans­actions of Tallinn Polytechnic Institute. Series A. 1955. No. 63. P. 51–64 [in Russian].
Back to Issue