ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
PYROLYSIS OF OIL SHALE MIXED WITH LOW-DENSITY POLYETHYLENE; pp. 42–48
PDF | doi: 10.3176/oil.2011.1.05

Authors
LIU YAN-HUI, XUE XIANG-XIN, LI YONG
Abstract
The pyrolysis experiments on oil shale mixed with low-density polyethylene (LDPE) were carried out with the aid of thermogravimetric analyzer, differential scanning calorimetry system and distillation furnace. The results obtained indicate that a synergistic effect exists to some extent during pyro­lysis of oil shale mixed with LDPE. The temperature of maximum degrada­tion of the mixture is approximately 5 °C lower than that of oil shale. The difference in weight loss between the pure oil shale and that mixed with LDPE is 1.17% at 550 °C. Co-pyrolysis experiments of oil shale mixed with LDPE show an increased shale oil yield, and the obtained oil containes novel alkynes or allenes.
References

  1. Altun, N. E., Hicyilmaz, C., Wang, J. H., Bagci, A. S. Evaluation of Turkish low quality oil shale by flotation as a clean energy source: Material characterization and determination of flotation behavior // Fuel Process. Technol. 2006.Vol. 87, No. 9. P. 783–791.
doi:10.1016/j.fuproc.2006.04.001

  2. Xue Hua-qing, Li Shu-yuan, Wang Hong-yan, Zheng De-wen, Fang, Chao-he. Pyrolysis kinetics of oil shale from Northern Songliao basin in China // Oil Shale. 2010. Vol. 27, No. 1. P. 5–16.

  3. Qian Jia-lin. Oil Shale. – Beijing: Petroleum Industry Press, 2008 [in Chinese].

  4. Kaljuvee, T., Pelt, J., Radin, M. TG-FTIR study of gaseous compounds evolved at thermooxidation of oil shale // J. Therm. Anal. Calorim. 2004. Vol. 78, No. 2. P. 399–414.
doi:10.1023/B:JTAN.0000046106.53195.26

  5. Li, S., Yue, C. Study of pyrolysis kinetics of oil shale // Fuel. 2003. Vol. 82, No. 3. P. 337–342.

  6. Fedorak, P. M., Coy, D. L. Oil sands cokes affect microbial activities // Fuel. 2006. Vol. 85, No. 12. P. 1642–1651.

  7. Petersen, H. I., Rosenberg, P., Nytoft, H. P. Oxygen groups in coals and alginite-rich kerogen revisited// Int. J. Coal Geol. 2008. Vol. 74, No. 2. P. 93–113.
doi:10.1016/j.coal.2007.11.007

  8. Sakurovs, R. Interactions between coking coals and plastics during co-pyro­lysis // Fuel. 2003. Vol. 82, No. 15. P. 1911–1916.

  9. Mastral, A. M., Callen, M. S., Garcia, T., Navarro, M. V. Improvement of liquids from coal–tire co-thermolysis. Characterization of the obtained oils // Fuel Process. Technol. 2000. Vol. 64, No. 1–3. P. 135–140.
doi:10.1016/S0378-3820(99)00127-7

10. Kaminsky, W., Predel, W., Sadiki, A. Feedstock recycling of polymers by pyro­lysis in a fluidised bed // Polym. Degrad. Stabil. 2004. Vol. 85, No. 3. P. 1045–1050.
doi:10.1016/j.polymdegradstab.2003.05.002

11. Tiikma, L., Luik, H., Pryadka, N. Co-pyrolysis of Estonian shales with low-density polyethylene // Oil Shale. 2004. Vol. 21, No. 1. P. 75–85.

12. Li Yong, Feng Zhong-yu, Xue Xiang-xin. Ecological utilization of oil shale by preparing silica and alumina // Journal of Chemical Industry and Engineering. 2008. Vol. 59, No. 4. P. 1052–1057 [in Chinese].

13. Ke Yi-kan, Dong Hui-ru. Spectral analysis. – Beijing: Chemical Industry Press, 2004 [in Chinese].

Back to Issue