ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
ELECTRICITY SCENARIOS FOR THE BALTIC STATES AND MARGINAL ENERGY TECHNOLOGY IN LIFE CYCLE ASSESSMENTS – A CASE STUDY OF ENERGY PRODUCTION FROM MUNICIPAL WASTE INCINERATION; pp. 331–346
PDF | doi: 10.3176/oil.2009.3S.14

Authors
H. MOORA, Valdur Lahtvee
Abstract

In the present study two different sets of assumptions for future power pro­duc­tion scenarios, one based on conventional technologies and another assum­ing a more sustainable energy oriented electricity production, for the Baltic States are analysed to identify the possible marginal electricity sources which could be used in consequential Life Cycle Assessment (LCA) studies in these countries. The environmental impacts of electricity production often account for a major portion of the total environmental burden in LCAs of many products and services. It is known that the environmental impacts of electricity production vary significantly between different energy sources, thus the choice of input data could significantly influence the final results of LCA studies. Therefore, it is important that the LCA practitioners and those who draw conclusions based on LCA studies have both an understanding about data sensitivity issues and the development of energy systems. In this article the implications of marginal data choices in LCA are discussed on the basis of a case study on energy production from municipal waste incineration in the Baltic States.

References

  1. Green Paper. A European Strategy for Sustainable, Competitive and Secure Energy. – Brussels, 8.3.2006, COM (2006) 105 final.

  2. Curran, M. A., Mann, M., Norris, G. The international workshop on electricity data for life cycle inventories // Journal of Cleaner Production. 2005. Vol. 13, No. 8. P. 853–862.
doi:10.1016/j.jclepro.2002.03.001

  3. Ekvall, T., Weidema, B. P. System boundaries and input data in consequential life cycle inventory analysis // Int. J. Life Cycle Assess. 2004. Vol. 9, No. 3. P.161–171.
doi:10.1007/BF02994190

  4. Tillman, A-M. Significance of decision-making for LCA methodology // Environ. Impact Assess. Rev. 1999. Vol. 20, No. 1. P. 113–123.
doi:10.1016/S0195-9255(99)00035-9

  5. Weidema, B. P. Frees, N., Nielesen, A-M. Marginal production technologies for life-cycle inventories // Int. J. Life Cycle Assess. 1999. Vol. 4, No. 1. P. 48–56.
doi:10.1007/BF02979395

  6. Weidema, B. P. Market information in life cycle assessment // Danish Environ­mental Protection Agency. Environmental Project No. 863. – Copenhagen, 2003.

  7. Moora, H., Stenmarck, A., Sundqvist, J. O. Use of life cycle assessment as decision-support tool in waste management planning – optimal waste manage­ment scenarios for the Baltic State // Environmental Engineering and Manage­ment Journal. 2006. Vol. 5, No. 3. P. 445–455.

  8. Staniskis, J., Varzinskas, V. Clean Product development based on life cycle assessment: Lithuanian experience // Proc. ERSCP 2005: 10th European Round­table on Sustainable Consumption and Production, Antwerp, Belgium, 5–7 October, 2005. P. 1–19.

  9. Blumberga, D., Njakou Djomo, S. Electricity from the Sun: is it attractive for Latvia? Life Cycle Assessment of photovoltaic systems // Latvian J. Physics Techn. Sci. 2005. No. 4. P. 3–12.

10. Koskela, S., Hiltunen, M-R. A guide to the utilization of LCI/LCA databases for Estonian enterprises. – Finnish Environment Institute. Helsinki, 2004.

11. OSELCA project for life cycle analysis of oil-shale electricity. Available from http://www.energia.ee/OSELCA/eng/index.php

12. Jushka, A., Miskinis, V. Energy in Lithuania 2006. – Lietuvos energetikos institutes, 2007.

13. Key World Energy Statistics. International Energy Agency. 2006. Available from http://www.iea.org

14. Agabus, H., Landsberg, M., Tammoja, H. Reduction of CO2 emissions in Estonia during 2000–2030 // Oil Shale. 2007. Vol. 24, No. 2S. P. 209–224.

15. Koskela, S., Seppala, J., Lipp, A., Hiltunen, M-R., Põld, E., Talve, S. Estonian electricity supply scenarios for 2020 and their environmental performance // Energy Policy. 2007. Vol. 35, No. 7. P. 3571–3582.
doi:10.1016/j.enpol.2007.01.001

16. Deksnys, R., Staniulis, R., Nargelas, A., Navickas, A., Miškinis, V., Galinis, A., Konstan­tinavičiute, I., Norvaiša, E. Competiveness of nuclear power plant in electricity markets of the Baltic Sea region // Oil Shale. 2007. Vol. 24, No. 2S. P. 347–362.

17. Power sector development in a common Baltic electricity market. – Eesti Energia, Latvenergo, Lietuvos Energija, Elkraft System, COWI. 2005.

18. Long-Term National Development Plan for the Fuel and Energy Sector until 2015. – Ministry of Economic Affairs and Communication. Tallinn, 2004.

19. Tammoja, H., Raesaar, P., Valtin, J., Tiigimägi, E. Electricity consumption in Estonia 2005-2015. Tallinn University of Technology. Report. – Tallinn, 2004. 50 p. [in Estonian].

20. Siirde, A. Potential of combined heat and power production in Estonia. Tallinn University of Technology. Report. – Tallinn, 2007. 27 p. [in Estonian].

21. Guidelines for Energy Sector Development 2007–2016. Project. – Ministry of Economics of Latvia, Riga, 2007.

22. Action Plan of Vision 2050 for Lithuania. Available from http://www.inforse.dk/europe/ pdfs/Actions-for-Lithuania.pdf

23. Rasburskis, N., Gudzinskas, J., Gylys, J. Combined heat and power production: social-economic and sustainable development aspects // Journal of Civil Engineering and Management. 2006. Vol. 12, No. 1. P. 29–36.

24. Jaskelevicius, B. Kyoto Protocol requirement and wind energy evolution in Lithuania // Ekologija. 2007. Vol. 53, No. 3. P. 16–23.

25. Palu, I., Tammoja, H., Oidram, R. Thermal power plant cooperation with wind turbines  // Estonian J. Engineering. 2008. Vol. 14, No. 4. P. 317–324.

26. Sjödin, J., Grönkvist, S. Emission accounting for use and supply of electricity in the Nordic market // Energy Policy. 2004. Vol. 32, No. 12. P. 1555–1564.
doi:10.1016/S0301-4215(03)00129-0

27. Finnveden, G. A world with CO2 caps. Electricity production in consequential assess­ments // Int. J. Life Cycle Assess. Aasta?Vol. 13, No. 5. P. 365–367.

28. Finnveden, G. Methodological aspects of life cycle assessment of integrated solid waste management systems // Resources, Conservation and Recycling. 1999. Vol. 26. P. 173–187.
doi:10.1016/S0921-3449(99)00005-1

29. Eriksson, O., Carlsson Reich, M., Frostell, B., Björklund, A., Assefa, G., Sund­qvist, J.-O., Granath, J., Baky, A., Thyselius, L. Municipal solid waste manage­ment from a systems perspective // Journal of Cleaner Production. 2005. Vol. 13, No. 3. P. 241–252.
doi:10.1016/j.jclepro.2004.02.018

30. Eriksson, O., Finnveden, G., Tomas Ekvall, T., Anna Björklund, A.Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion // Energy Policy. 2007. Vol. 35, No. 2. P. 1346–1362.
doi:10.1016/j.enpol.2006.04.005

31. Sundqvist, J. O., Granath, J., Reich Carlsson, M. How should be municipal waste be managed? Assessment of different treatment options. IVL Report B1462. – Stockholm, 2002. Available from http://www.ivl.se [in Swedish].

32. Björklund, A. Environmental systems analysis of waste management – experiences from applications of the ORWARE model. PhD thesis TRITA-KEM-IM 2000:15, ISSN 1402-7615, AFR report 30. – Stockholm, Sweden: Royal Institute of Technology, 2000.

33. Eriksson, O. A systems perspective of waste and energy. Licentiate thesis TRITA-KEM-IM 200:16, ISSN 1402-7615, AFR report 30. – Stockholm, Sweden: Royal Institute of Technology, 2000.

Back to Issue