ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
BALANCING OF WIND ENERGY USING OIL-SHALE BASED POWER PLANTS AT ERRONEOUS WIND FORECAST CONDITIONS; pp. 189-199
PDF | doi: 10.3176/oil.2009.3S.02

Authors
Ivo Palu, R. R. OIDRAM, M. Keel, Heiki Tammoja
Abstract

During the negotiations with EU, Estonia was set an indicative target to increase the share of renewable energy sources in the electricity production to 5.1% of inland consumption by the year 2010. Similarly to the rest of Europe, one of the main means to achieve this target is to install wind turbines. The current paper analyses the capability of existing oil-shale power plants to cover differences between forecasted and actual generation of wind energy and shows that participation of fossil fuel-based power plants in the compensation of fluctuating production of wind turbines eliminates part of the expected positive effect of wind energy.

References

1.   US and China in race to the top of global wind industry. Global Wind Energy Council News 02.02.2009. http://www.gwec.net/ (15.02.09).

 2.   Estonian development plan for the electricity sector 2008–2018 – draft. The Ministry of Economic Affairs and Communications, 26.02.2009. P. 1–50.

3.   Wind now leads EU power sector. European Wind Energy Association News 02.02.09. http://www.ewea.org (15.02.09).

4.   Kiviluoma, J., Holttinen, H. Impacts of wind power on energy balance of hydro dominated power system. VTT Technical Research Centre of Finland. – Proc. European Wind Power Conference 2006, 27 February – 2 March 2006, Athens, Greece.

6.   Leonhard, W., Müller, K. Balancing fluctuating wind energy with fossil power stations. Where are the limits? // Electra. 2002. Vol. 204. P. 12–17.

7.   Lund, H. Large-scale integration of wind power into different energy systems // Energy. 2005. Vol. 30, No. 13. P. 2402–2412.

8.   Strbac, G., Shakoor, A., Black, M., Pudjianto, D., Bopp, T. Impact of wind generation on the operation and development of the UK electricity systems // Electric Power Systems Research. 2007. Vol. 77, No. 9. P. 1214–1227.
doi:10.1016/j.epsr.2006.08.014

9.   Sinkov, V. M., Bogoslovskii, A. V., Grigorenko, V. G. et al. Optimization of Power Systems Operation. – Kiev, 1976 [in Russian].

10.     Girschfeld, V., Knjazev, A., Kulikov, V. Operation of Thermal Power Plants. – Moscow, 1980 [in Russian].

11.     Kaewboonsong, W., Kuprianov, V. I., Chovichien, N. Minimizing fuel and environ­mental costs for a variable-load power plant (co-)firing fuel oil and natural gas: Part 1. Modeling of gaseous emissions from boiler units // Fuel Process. Technol. 2006. Vol. 87, No. 12. P. 1085–1094.
doi:10.1016/j.fuproc.2006.08.003

12.     Fragaki, A., Andersen, A. N., Toke, D. Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK // Energy. 2008. Vol. 33, No. 11. P. 1659–1670.

13.     Palu, I., Tammoja, H., Oidram, R. (2008). Thermal power plant cooperation with wind turbines // Estonian J. Engineering. 2008. Vol. 14, No. 4. P. 317–324.

14.     Liik  O., Oidram, R., Keel, M., Ojangu, J., Landsberg, M., Dorovatovski, N. Co-operation of Estonia’s oil shale-based power system with wind turbines // Oil Shale. 2005. Vol. 22, No. 2S. P. 127–142.

Back to Issue