ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
ENERGY REQUIREMENTS OF USING OIL SHALE IN THE PRODUCTION OF ORDINARY PORTLAND CLINKER; pp. 301–309
PDF | doi: 10.3176/oil.2008.3.02

Authors
H. ALLABOUN, Awni Y. Al-Otoom
Abstract
Energy balance was performed on the clinkering process when utilizing oil shale as a source of both raw materials and energy. The balance was also compared with the typical energy requirements for production of Ordinary Portland (OP) Clinker. The use of Jordanian oil shale can reduce energy requirements in production of OP clinker by 15–20%. This reduction is due to two factors: lower clinkering temperature of 1300–1350 °C and an appropriate proportion of the proposed raw materials. An additional energy of 1726 kJ/ton clinker, which represents 45% of the required energy, is needed to achieve the required clinkering temperature. This could be achieved by estimating the amounts of makeup fuel basing on the net calorific value of this fuel.
References

  1. Szabo, L., Hidalgo, I., Ciscar, J. C., Soria, A., Russ, P. Energy consumption and CO2 emissions from the world cement industry. – European Commission Joint Research Centre, Report EUR 20769 EN, June 2003.

  2. European Cement Association. cement & lime bref revision cembureau contribution specific energy consumption. 2006, Report No. T6318/CL/OMR/MHT.

  3. Russell, P. L. Oil Shales of the World; Their Origin Occurrence and Exploitation. – Oxford: Pergamon Press, 1990.

  4. Jaber, J. O., Probert, S. D., Williams, P. T. Evaluation of oil yield from Jordanian oil shales // Energy. 1999. Vol. 24, No. 9. P. 761–781.

  5. Smadi, M., Haddad, R. The use of oil shale in Portland cement concrete // Cement Concr. Compos. 2003. Vol. 25, No. 1. P. 43–50.
doi:10.1016/S0958-9465(01)00054-3

  6. Al-Otoom, A. Utilization of oil shale in the production of Portland clinker // Cement Concr. Compos. 2006. Vol. 28, No. 11. P. 3–11.
doi:10.1016/j.cemconcomp.2005.06.006

  7. Lea, F. The Chemistry of Cement and Concrete. – London: Edward Arnold Ltd, 1970.

  8. Bale, C. W., Pelton, A. D., Thompson, W. T. Facility for the Analysis of Chemical Thermodynamics (FACT). – Montreal, Canada: Ecole Polytechnique, 2000 (http://www.crct.polymtl.ca). 

  9. Jak, E. Predictions of coal ash fusion temperatures with FACT thermodynamic package // Fuel. 2002. Vol. 81, No. 13. P. 1655–1668.

10. Al-Harahsheh, A., Al-Otoom, A., Shawabkeh, R. Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale // Energy. 2005. Vol. 30, No. 15. P. 2784–2795.

11. Robie, R, Hemingway, B, Fisher, J. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. – Washington: US Government Printing Office, 1978.

12. Peray, K. E. Cement Manufacturers Handbook. – New York: Chemical Publish­ing Company, 1979.

13. Thoenen, T., Kulik, D. Nagra/PSI Chemical Thermodynamic Data Base 01/01 for the GEM-Selektor (V.2-PSI) Geochemical Modeling Code: Release 28-02-03. PSI Technical Report TM-44-03-04 about the GEMS version of Nagra/PSI chemical thermodynamic database 01/01. 2003.
Back to Issue