ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

From the molecules of resorcinolic lipids to alga G. prisca globular colonies in kukersite microfossils: a multiscale simulation study; pp. 281–287

Full article in PDF format | 10.3176/oil.2020.4.02

Authors
Toomas Kaevand, Ülo Lille

Abstract

To understand the presence of globules in the kerogen of Estonian kukersite a multiscale simulation study is performed using the ESPResSo methodology and structures of known building blocks. It is demonstrated how these globules are formed due to the intermolecular interactions in these building blocks.


References

1. Lille, Ü. On the origin of 5-alkyl-1,3-benzenediols in the retort oil of Estonian kukersite. Oil Shale, 1999, 16(3), 231‒237.

2. Blokker, P., Van Bergen, P., Pancost, R., Collinson, M. E., De Leeuw, J. W., Sinninghe Damste, J. S. The chemical structure of Gloeocapsomorpha prisca microfossils: implications for their origin. Geochim. Cosmochim. Ac., 2001, 65(6), 885‒900.
https://doi.org/10.1016/S0016-7037(00)00582-2

3. Lille, Ü. Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale, 2003, 20(3), 253‒263.

4. Zalessky, M. D. Proc. Russian Acad. Sci., 1917, II, part 1 (in Russian).

5. Fomina, A. S., Pobul, L. J., Degtereva, Z. A. The Chemical Nature of Baltic Kukersite Oil Shale and Its Properties as A Chemical Raw Material. Tallinn: Estonian Acad. Sci., 1965 (in Russian, Summary in English).

6. Savest, N., Oja, V., Kaevand, T., Lille, Ü. Interaction of Estonian kukersite with organic solvents: A volumetric swelling and molecular simulation study. Fuel, 2007, 86(1‒2), 17‒21.
https://doi.org/10.1016/j.fuel.2006.06.016

7. Kozubek, A. Interaction of alkylresorcinols with proteins. Acta Biochim. Pol., 1995, 42(2), 241‒246.
https://doi.org/10.18388/abp.1995_4616

8. Reynwar, B. J, Illya, G., Harmandaris, V. A., Müller, M. M., Kremer, K., Deserno, M. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature, 2007, 447, 461‒464.
https://doi.org/10.1038/nature05840

9. Hettema, E. H., Gould, S. J. Cell biology: Organelle formation from scratch. Nature, 2017, 542, 174‒175.
https://doi.org/10.1038/nature21496

10. Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C, 1973, 28(11), 693‒703.
https://doi.org/10.1515/znc-1973-11-1209

11. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen as evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799‒804.
https://doi.org/10.1016/S0016-2361(02)00358-7

12. Bekirogullari, M., Fragkopoulos, I. S., Pittman, J. K., Theodoropoulos, C. Production of lipid-based fuels and chemicals from microalgae: An integrated experimental and model-based optimization study. Algal Res., 2017, 23, 78‒87.
https://doi.org/10.1016/j.algal.2016.12.015

13. Bereau, T., Hu, M., Diggins, P., Deserno, M. Mesoscopic Membrane Simulations with Mbtools. Carnegie Mellon University, Pittsburgh, PA, USA, 2012, pp. 14.

14. Cooke, I. R., Kremer, K., Deserno, M. Tunable generic model for fluid bilayer membranes. Phys. Rev. E, 2005, 72(1), 011506.
https://doi.org/10.1103/PhysRevE.72.011506

15. Kozubek, A., Tyman, J. H. P. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev., 1999, 99(1), 1‒26.
https://doi.org/10.1021/cr970464o

16. Cimrak, J., Gusenbauer, M., Schrefl, T. Modelling and simulation of processes in microfluidic devices for biomedical applications. Comp. Math. Appl., 2012, 64(3), 278‒288.
https://doi.org/10.1016/j.camwa.2012.01.062

17. Zalessky, M. D. On the marine Silurian sapropelite formed by blue-green algae. Proc. Russian Acad. Sci., 1917, VI, 11(1), 3‒18 (in Russian).


Back to Issue