eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Reactivities of American, Chinese and Estonian oil shale semi-cokes and Argonne premium coal chars under oxy-fuel combustion conditions; pp. 353–369

Chris Culin, Kevin Tente, Alar Konist, Birgit Maaten, Lauri Loo, Eric Suuberg, Indrek Külaots

Oil shales of various rank and origin from China, Estonia and the United States are investigated and their oxidation reactivities under simulated oxy-fuel combustion conditions, in air, and in 100% CO2 atmospheres explored. Independent of rank and origin, as the oil shale pyrolysis temperature increases, the oil shale semi-coke oxidation reactivity decreases. The oxidation reactivities in air and in simulated oxy-fuel oxidation atmospheres for all of the oil shale semi-cokes tested are more or less the same. Oil shale semi-coke oxidation reaction activation energies in an air atmosphere are similar to the activation energies obtained under the simulated oxy-fuel conditions. These findings are useful for optimizing retrofit of current oil shale-fired systems to oxy-fuel combustion conditions, particularly if they are to be fired with oil shale semi-coke from retorting processes.


Duncan, D. C., Swanson, V. E. Organic-Rich Shale of the United States and World Land Areas. Geological Survey Circular 523, Washington, 1965.

2.     Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193‒252.

3.     Dyni, J. R. Geology and Resources of Some World Oil-Shale -Deposits. Scientific Investigation Report 2005-5294. U.S. Geological Survey, Reston, Virginia, 2006.

4.     Han, X., Kulaots, I., Jiang, X.,Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143‒161.

5.     Sennoune, M., Salvador, S., Quintard, M. Reducing CO2 emissions from oil shale semicoke smoldering combustion by varying the carbonate and fixed carbon contents. Combust. Flame, 2011, 158(11), 2272‒2282.

6.     U.S. Department of Energy, E.I.A., International Energy Statistics, Estonia. 2016.

7.     Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R. D. Advances in CO2 capture technology ‒ The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Con., 2008, 2(1), 9‒20.

8.     Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale. Prog. Energ. Combust., 2007, 33(6), 552–579.

9.     Loo, L., Konist, A., Neshumayev, D., Pihu, T., Maaten, B., Siirde, A. Ash and flue gas from oil shale oxy-fuel circulating fluidized bed combustion. Energies, 2018, 11(5), 1218.

10.   Komaki, A., Goto, T., Uchida, T., Yamada, T., Kiga, T., Spero, C. Operational results of oxyfuel power plant (Callide Oxyfuel Project). Mechani-cal Engineering Journal, 2016, 3(6), 16-00342.

11.   Wu, X. D., Yang, Q., Chen, G. Q., Hayat, T., Alsaedi, A. Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600 MW retrofitted oxyfuel power plant as a case study. Renew. Sust. Energ. Rev., 1274–1285.

12.   Buhre, B. J. P., Elliot, L. K., Sheng, C. D., Gupta, R. P., Wall, T. F. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energ. Combust., 2005, 31(4), 283‒307.

13.   Wall, T., Liu, Y. H., Spero, C., Elliott, L., Khare, S., Rathnam, R., Gani, Z. F. A., Moghtaderi, B., Buhre, B., Sheng, C. D., Gupta, R., -Yamada, T., Makino, K., Yu, J. L. An overview on oxyfuel coal combustion ‒ State of the art research and technology development. Chem. Eng. Res. Des., 2009, 87(8), 1003‒1016.

14.   Wall, T. F. Combustion processes for carbon capture. P. Combust. Inst., 2007, 31(1), 31‒47.

15.   Zhang, J., Ito, T., Ito, S., Riechelmann, D., Fujimori, T. Numerical investigation of oxy-coal combustion in a large-scale furnace: Non-gray effect of gas and role of particle radiation. Fuel, 2015, 139, 87‒93.

16.   Fujimori, T., Yamada, T. Realization of oxyfuel combustion for near zero emission power generation. P. Combust. Inst., 2013, 34(2), 2111‒2130.

17.   Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., Jensen, A. D. Oxy-fuel combustion of solid fuels. Prog. Energ. Combust., 2010, 36(5), 581‒625.

18.   Gao, H., Runstedtler, A., Majeski, A., Yandon, R., Zanganeh, K., -Shafeen, A. Reducing the recycle flue gas rate of an oxy-fuel utility -power boiler. Fuel, 2015, 140, 578‒589.

19.   Al-Makhadmeh, L., Maier, J., Al-Harahsheh, M., Scheffknecht, G. Oxy--fuel technology: An experimental investigation into oil shale combustion under oxy-fuel conditions. Fuel, 2013, 103, 421‒429.

20.   Konist, A., Loo, L., Valtsev, A., Maaten, B., Siirde, A., Neshumayev, D., Pihu, T. Calculation of the amount of Estonian oil shale products from combustion in regular and oxy-fuel mode in a CFB boiler. Oil Shale, 2014, 31(3), 211‒224.

21.   Normann, F., Andersson, K., Leckner, B., Johnsson, F. Emission control of nitrogen oxides in the oxy-fuel process. Prog. Energ. Combust., 2009, 35(5), 385‒397.

22.   McCauley, K. J., Farzan, H., Alexander, K. C., McDonald, D. K., -Varagani, R., Prabhakar, R., Tranier, J.-P., Perrin, N. Commercialization of oxy-coal combustion: Applying results of a large 30MWth pilot -project. Energy Procedia, 2009, 1(1), 439‒446.

23.   Rathnam, R. K., Elliott, L. K., Wall, T. F., Liu, Y. H., Moghtaderi, B. Differ-ences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Process. Technol., 2009, 90(6), 797‒802.

24.   Meriste, T., Yörük, C. R., Trikkel, A., Kaljuvee, T., Kuusik, R. TG-FTIR analysis of oxidation kinetics of some solid fuels under oxy-fuel conditions. J. Therm. Anal. Calorim., 2013, 114(2), 483‒489.

25.   Vorres, K. S. The Argonne premium coal sample program. Energ. Fuel., 1990, 4(5), 420‒426.

26.   Cook, E. W. Oil-shale technology in USA. Fuel, 1974, 53(3), 146‒151.

27.   Külaots, I., Goldfarb, J. L., Suuberg, E. M. Characterization of Chinese, American and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89(11), 3300‒3306.

28.   Williams, P. T., Ahmad, N. Influence of process conditions on the pyro-l-ysis of Pakistani oil shales. Fuel, 1999, 78(6), 653‒662.

29.   Charpenay, S., Serio, M. A., Solomon, P. R. The prediction of coal char reactivity under combustion conditions. Twenty-Fourth Symposium (Inter-national) on Combustion, 1992, 24(1), 1189–1197.

30.   Goldfarb, J. L., D’Amico, A., Culin, C., Suuberg, E. M., Külaots, I. -Oxidation kinetics of oil shale semicokes: Reactivity as a function of pyro-lysis temperature and shale origin. Energ. Fuel., 2013, 27(2), 666‒672.

31.   Zanoni, M. A. B., Massard, H., Martins, M. F. Formulating and optimizing a combustion pathways for oil shale and its semi-coke. Combust. Flame, 2012, 159(10), 3224‒3234.

32.   Burnham, A. K., Braun, R. L. Global kinetic analysis of complex materials. Energ. Fuel., 1999, 13(1), 1‒22.

33.   Trikkel, A., Kuusik, R., Martins, A., Pihu, T., Stencel, J. M. Utilization of Estonian oil shale semicoke. Fuel Process. Technol., 2008, 89(8), 756‒763.

34.   Senneca, O., Russo, P., Salatino, P., Masi, S. The relevance of thermal annealing to the evolution of coal char gasification reactivity. Carbon, 1997, 35(1), 141‒151.

35.   Külaots, I., Aarna, I., Callejo, M., Hurt, R. H., Suuberg, E. M. Development of porosity during coal char combustion. P. Combust. Inst., 2002, 29(1), 495‒501.

36.   Zhang, X. J., de Jong, W., Preto, F. Estimating kinetic parameters in TGA using B-spline smoothing and the Friedman method. Biomass Bioenerg., 2009, 33(10), 1435‒1441.

Back to Issue