ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

STUDY ON THE COMBUSTION CHARACTERISTICS OF OIL SHALE AND ITS SEMICOKE BY USING A THERMOBALANCE AND A DROP-TUBE FURNACE; pp. 271–284

Full article in PDF format | https://doi.org/10.3176/oil.2019.2.02

Authors
XIAOYANG LI, ZE WANG, JINGDONG HE, LIFANG HAO, SONGGENG LI, WEIGANG LIN

Abstract

The combustion characteristics of Huadian oil shale and its semicoke are comparatively studied using a thermobalance (TB) and a drop-tube furnace (DTF). It is found that the ignition mechanism of oil shale and semicoke is hetero-homogeneous and heterogeneous, respectively. Drop-tube furnace experiments with both oil shale and semicoke show that the carbon (C) conversion proceeds almost simultaneously with the particle burnout, while the hydrogen (H) conversion is faster and that of nitrogen (N) and sulphur (S) slower than the particle burnout. The kinetic behavior of semi­coke combus­tion is analyzed by drop-tube furnace experiments based on the first-order reaction model, and the kinetic model with known pre-exponential factor Aa (26.3 g·cm–2 s–1·atm–1) and apparent active energy Ea (65.8 kJ/mol) is obtained.


References

1.      Na, J. G., Im, C. H., Chung, S. H., Lee, K. B. Effect of oil shale retorting temperature on shale oil yield and properties. Fuel, 2012, 95, 131‒135.
https://doi.org/10.1016/j.fuel.2011.11.029

2.      Wang, S., Jiang, X., Han, X., Tong, J. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42(1), 224‒232.
https://doi.org/10.1016/j.energy.2012.03.066

3.      Qian, J., Yin, L. Oil Shale Petroleum Alternative. China Petrochemical Press, 2008 (in Chinese).

4.      Yefimov, V., Doilov, S., Pulemyotov, I. Development of ecologically accept­able technology for processing large particle kukersite in vertical retorts. Oil Shale, 1997, 14(1), 77‒83.

5.      Kahru, A., Põllumaa, L. Environmental hazard of the waste streams of Estonian oil shale industry: an ecotoxicological review. Oil Shale, 2006, 23(1), 53‒93.

6.      Külaots, I., Goldfarb, J. L., Suuberg, E. M. Characterization of Chinese, American and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89(11), 3300‒3306.
https://doi.org/10.1016/j.fuel.2010.05.025

7.      Trikkel, A., Kuusik, R., Martins, A., Pihu, T., Stencel, J. M. Utilization of Estonian oil shale semicoke. Fuel Process. Technol., 2008, 89(8), 756‒763.
https://doi.org/10.1016/j.fuproc.2008.01.010

8.      Wang, J., Lu, X., Yao, J., Lin, W., Du, L. Total distribution and liquid com­position of products from coal topping process in a downer reactor. The Chinese Journal of Process Engineering, 2005, 5(3), 241‒245 (in Chinese).
https://doi.org/10.1021/ie049404g

9.      Aarna, I. The 3rd International Oil Shale Symposium in Tallinn. Oil Shale, 2009, 26(3), 349‒357.
https://doi.org/10.3176/oil.2009.3.01

10.  Shi, W., Wang, Z., Song, W., Li, S., Li, X. Pyrolysis of Huadian oil shale under catalysis of shale ash. J. Anal. Appl. Pyrol., 2017, 123, 160‒164.
https://doi.org/10.1016/j.jaap.2016.12.011

11.  Lai, D., Zhang, G., Xu, G. Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals. Fuel Process. Technol., 2017, 158, 191‒198.
https://doi.org/10.1016/j.fuproc.2017.01.005

12.  Lai, D., Shi, Y., Geng, S., Chen, Z., Gao, S., Zhan, J., Xu, G. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals. Fuel, 2016, 173, 138‒145.
https://doi.org/10.1016/j.fuel.2016.01.052

13.  Qin, H., Wang, W., Liu, H., Zhang, L., Wang, Q., Shi, C. Thermal behavior research for co-combustion of furfural residue and oil shale semi-coke. Appl. Therm. Eng., 2017, 120, 19‒25.
https://doi.org/10.1016/j.applthermaleng.2017.03.111

14.  Goldfarb, J. L., DʼAmico, A., Culin, C., Suuberg, E. M., Külaots, I. Oxidation kinetics of oil shale semicokes: reactivity as a function of pyrolysis temperature and shale origin. Energ. Fuel., 2013, 27(2), 666‒672.
https://doi.org/10.1021/ef3015052

15.  Ma, B., Li, X., Xu, L., Wang, K., Wang, X. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis. Thermochim. Acta, 2006, 445(1), 19‒22.
https://doi.org/10.1016/j.tca.2006.03.021

16.  Artos, V., Scaroni, A. W. T.g.a. and drop-tube reactor studies of the com­bustion of coal blends. Fuel, 1993, 72(7), 927‒933.
https://doi.org/10.1016/0016-2361(93)90289-E

17.  Mayoral, M. C., Izquierdo, M. T., Andrés, J. M., Rubio, B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochim. Acta, 2001, 370(1–2), 91‒97.
https://doi.org/10.1016/S0040-6031(00)00789-9

18.  Arenillas, A., Rubiera, F., Arias, B., Pis, J. J., Faúndez, J. M., Gordon, A. L., Garcia, X. A. A TG/DTA study on the effect of coal blending on ignition behaviour. J. Therm. Anal. Calorim., 2004, 76(2), 603‒614.
https://doi.org/10.1023/B:JTAN.0000028039.72613.73

19.  Chen, Y., Mori, S., Pan, W. P. Studying the mechanism of ignition of coal particles by TG-DTA. Thermochim. Acta, 1996, 275(1), 149‒158.
https://doi.org/10.1016/0040-6031(95)02727-0

20.  Baxter, L. L., Mitchell, R. E., Fletcher, T. H., Hurt, R. H. Nitrogen release during coal combustion. Energ. Fuel., 1996, 10(1), 188‒196.
https://doi.org/10.1021/ef9500797

21.  Wang, G., Zander, R., Costa, M. Oxy-fuel combustion characteristics of pulverized-coal in a drop tube furnace. Fuel, 2014, 115, 452‒460.
https://doi.org/10.1016/j.fuel.2013.07.063

22.  Murphy, J. J., Shaddix, C. R. Combustion kinetics of coal chars in oxygen-enriched environments. Combust. Flame, 2006, 144(4), 710‒729.
https://doi.org/10.1016/j.combustflame.2005.08.039

23.  Bartle, K. D., Perry, D. L., Wallace, S. The functionality of nitrogen in coal and derived liquids: An XPS study. Fuel Process. Technol., 1987, 15, 351‒361.
https://doi.org/10.1016/0378-3820(87)90057-9

24.  Nelson, P. F., Buckley, A. N., Kelly, M. D. Functional forms of nitrogen in coals and the release of coal nitrogen as NOx precursors (HCN and NH3). Twenty-fourth Symposium (International) on Combustion, July 5‒10, University of Sydney, Australia. The Combustion Institute, Pittsburgh, PA, 1992, 1259‒1267.
https://doi.org/10.1016/S0082-0784(06)80148-7

25.  Wallace, S., Bartle, K. D., Perry, D. L. Quantification of nitrogen functional groups in coal and coal derived products. Fuel, 1989, 68(11), 1450‒1455.
https://doi.org/10.1016/0016-2361(89)90044-6

26.  Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799‒804.
https://doi.org/10.1016/S0016-2361(02)00358-7

27.  Aarna, I., Suuberg, E. M. The role of carbon monoxide in the NO−carbon reaction. Energ. Fuel., 1999, 13(6), 1145‒1153.
https://doi.org/10.1021/ef9900278

28.  Pels, J. R., Wójtowicz, M. A., Moulijn, J. A. Rank dependence of N2O emission in fluidized-bed combustion of coal. Fuel, 1993, 72(3), 373‒379.
https://doi.org/10.1016/0016-2361(93)90056-8

29.  Zhao, J., Grace, J. R., Lim, J. C., Brereton, C. M. H., Legros, R. Influence of operating parameters on NOx emissions from a circulating fluidized bed combustor. Fuel, 1994, 73(10), 1650‒1657.
https://doi.org/10.1016/0016-2361(94)90146-5

30.  Li, S., Xu, M., Jia, L., Tan, L., Lu, Q. Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed. Appl. Energ., 2016, 173, 197‒209.
https://doi.org/10.1016/j.apenergy.2016.02.054

31.  Chen, L., Bhattacharya, S. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions. Environ. Sci. Technol., 2013, 47(3), 1729‒1734.
https://doi.org/10.1021/es303364g

32.  Hurt, R. H., Haynes, B. S. On the origin of power-law kinetics in carbon oxidation. P. Combust. Inst., 2005, 30(2), 2161‒2168.
https://doi.org/10.1016/j.proci.2004.08.131

33.  Karlström, O., Brink, A., Hupa, M., Tognotti, L. Multivariable optimization of reaction order and kinetic parameters for high temperature oxidation of 10 bituminous coal chars. Combust. Flame, 2011, 158(10), 2056‒2063.
https://doi.org/10.1016/j.combustflame.2011.03.003

34.  Ballester, J., Jiménez, S. Kinetic parameters for the oxidation of pulverised coal as measured from drop tube tests. Combust. Flame, 2005, 142(3), 210‒222.
https://doi.org/10.1016/j.combustflame.2005.03.007

35.  Field, M. A. Rate of combustion of size-graded fractions of char from a low-rank coal between 1200°K and 2000°K. Combust. Flame, 1969, 13(3), 237‒252.
https://doi.org/10.1016/0010-2180(69)90002-9

36.  Smith, I. W. The combustion rates of coal chars: A review. Nineteenth Symposium (International) on Combustion, 8–13 August 1982, Technion-Israel Institute of Technology, Haifa, Israel. The Combustion Institute, Philadelphia, 1982, 1045‒1065.
https://doi.org/10.1016/S0082-0784(82)80281-6

37.  Smith, I. W. Kinetics of combustion of size-graded pulverized fuels in the temperature range 1200–2270°K. Combust. Flame, 1971, 17(3), 303‒314.
https://doi.org/10.1016/S0010-2180(71)80052-4

38.  Smith, I. W. The kinetics of combustion of pulverized semi-anthracite in the temperature range 1400–2200°K. Combust. Flame, 1971, 17(3), 421‒428.
https://doi.org/10.1016/S0010-2180(71)80065-2

39.  Mitchell, R. E., Hurt, R. H., Baxter, L. L., Hardesty, D. R. Compilation of Sandia Coal Char Combustion Data and Kinetic Analyses. Milestone Report. Sandia Technical Report, SAND92-8208. Sandia National Labs, Livermore, CA, 1992.
https://doi.org/10.2172/7045508


Back to Issue