eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9



Laser-induced breakdown spectroscopy (LIBS) was used for the quantitative assessment of the calorific value of Estonian oil shale. Samples were collected from different layers of oil shale and limestone from Narva open cast mine, Estonia.
   Lumps of crushed oil shale without any special preparation were tested on a mock-up of a moving conveyor belt. The moisture content of oil shale samples was varied. Multivariate regression analysis was applied for pro­cessing of spectroscopic data. The results obtained using the bomb calori­metric method were used for calibration. The method for selecting the optimal number of spectral lines for data processing is presented. The standard deviation of prediction of the calorific value was 1.76 MJ/kg and the moisture content was 1.94%.




1.       Aarna, I. Developments in production of synthetic fuels out of Estonian oil shale. Energy Environ., 2011, 22(5), 541–552.

2.       Ots, A. Estonian oil shale properties and utilization in power plants. Energetika, 2007, 53(4), 8–18.

3.       Valgma, I., Reinsalu, E., Sabanov, S., Karu, V. Quality control of oil shale production in Estonian mines. Oil Shale, 2010, 27(3), 239–249.

4.       Gaft, M., Dvir, E., Modiano, H., Schone, U. Laser induced breakdown spectroscopy machine for online ash analyses in coal. Spectrochim. Acta B, 2008, 63(10), 1177–1182.

5.       Hahn, D. W., Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc., 2012, 66(4), 347–419.

6.       Romero, E. C., De Saro, R. LIBS analysis for coal. In: Laser-Induced Breakdown Spectroscopy: Theory and Applications (Musazzi, S., Perini, U., eds). Springer, Berlin-Heidelberg, 2014, 511–529.

7.       Redoglio, D., Golinelli, E., Musazzi, S., Perini, U., Barberis, F. A large depth of field LIBS measuring system for elemental analysis of moving samples of raw coal. Spectrochim. Acta Part B At. Spectrosc., 2016, 116, 46–50.

8.       Craparo, J., De Saro, R., Romero, C., Yao, Z., Whitehouse, A., Weisberg, A. Measuring thermal properties of coal with a commercial bench top LIBS system. In: Applied. Industrial Optics: Spectroscopy, Imaging and Metrology. AIO, 2012, 4–6.

9.       Yao, S., Lu, J., Dong, M., Chen, K., Li, J., Li, J. Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis. Appl. Spectrosc., 2011, 65(10), 1197–1201.

10.    Yuan, T., Wang, Z., Lui, S.-L., Fu, Y., Li, Z., Liu, J., Ni, W. Coal property analysis using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 2013, 28(7), 1045–1053.

11.    Chen, M., Yuan, T., Hou, Z., Wang, Z., Wang, Y. Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy. Spectrochim. Acta B, 2015, 112, 23–33.

12.    Birdwell, J. E., Washburn, K. E. Rapid analysis of kerogen hydrogen-to-carbon ratios in shale and mudrocks by laser-induced breakdown spectroscopy. Energ. Fuel., 2015, 29(11), 6999–7004.

13.    Washburn, K. E. Rapid geochemical and mineralogical characterization of shale by laser-induced breakdown spectroscopy. Org. Geochem., 2015, 8384, 114–117.

14.    Sanghapi, H. K., Jain, J., Bol’shakov, A., Lopano, C., McIntyre, D., Russo, R. Determination of elemental composition of shale rocks by laser induced breakdown spectroscopy. Spectrochim. Acta B, 2016, 122, 9–14.

15.    Aints, M., Paris, P., Laan, M., Piip, K., Riisalu, H., Tufail, I. Determination of heating value of Estonian oil shale by laser-induced breakdown spectroscopy. J. Spectrosc., 2018, Article ID 4605925, 1–10.

16.    Paris, P., Piip, K., Lepp, A., Lissovski, A., Aints, M., Laan, M. Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy. Spectrochim. Acta B, 2015, 107, 61–66.

17.    Väli, E., Valgma, I., Reinsalu, E. Usage of Estonian oil shale. Oil Shale, 2008, 25(2S), 101–114.

18.    O’Kelly, B. C. Oven-drying characteristics of soils of different origins. Dry. Technol., 2005, 23(5), 1141–1149.

19.    Wisbrun, R., Schechter, I., Niessner, R., Schroder, H., Kompa, K. L. Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy. Anal. Chem., 1994, 66(18), 2964–2975.

20.    Bolger, J. A. Semi-quantitative laser-induced breakdown spectroscopy for analysis of mineral drill core. Appl. Spectrosc., 2000, 54(2), 181–189.

21.    Feng, J., Wang, Z., Li, Z., Ni, W. Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters. Spectrochim. Acta B, 2010, 65(7), 549–556.

22.    Senesi, G. S. Laser-induced breakdown spectroscopy (LIBS) applied to terrestrial and extraterrestrial analogue geomaterials with emphasis to minerals and rocks. Earth-Sci. Rev., 2014, 139, 231–267.

23.    Tucker, J. M., Dyar, M. D., Schaefer, M. W., Clegg, S. M., Wiens, R. C. Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis. Chem. Geol., 2010, 277(1–2), 137–148.

24.    Bublitz, J., Dölle, C., Schade, W., Hartmann, A., Horn, R. Laser-induced breakdown spectroscopy for soil diagnostics. Eur. J. Soil Sci., 2001, 52(2), 305–312.

25.    Chen, M., Yuan, T. Hou, Z., Wang, Z., Wang, Y. Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy. Spectrochim. Acta B, 2015, 112, 23–33.

26.    Kim, G., Kwak, J., Kim, K.-R., Lee, H., Kim, K.-W., Yang, H., Park, K. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS). J. Hazard. Mater., 2013, 263, 754–760.

27.    Martens, H., Naes, T. Multivariate Calibration. John Wiley Sons, Chichester, 1989.

Shahlaei, M. Descriptor selection methods in quantitative structure–activity relationship studies: A review study. Chem. Rev., 2013, 113(10), 8093–8103.


Back to Issue