ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
DETERMINATION OF THE CALORIFIC VALUE AND MOISTURE CONTENT OF CRUSHED OIL SHALE BY LIBS; pp. 339–355
PDF | https://doi.org/10.3176/oil.2018.4.04

Authors
MÄRT AINTS, PEETER PARIS, IRAM TUFAIL, INDREK JÕGI, HARDI AOSAAR, HELLA RIISALU, MATTI LAAN
Abstract

 

Laser-induced breakdown spectroscopy (LIBS) was used for the quantitative assessment of the calorific value of Estonian oil shale. Samples were collected from different layers of oil shale and limestone from Narva open cast mine, Estonia.
   Lumps of crushed oil shale without any special preparation were tested on a mock-up of a moving conveyor belt. The moisture content of oil shale samples was varied. Multivariate regression analysis was applied for pro­cessing of spectroscopic data. The results obtained using the bomb calori­metric method were used for calibration. The method for selecting the optimal number of spectral lines for data processing is presented. The standard deviation of prediction of the calorific value was 1.76 MJ/kg and the moisture content was 1.94%.

 

References

 

1.       Aarna, I. Developments in production of synthetic fuels out of Estonian oil shale. Energy Environ., 2011, 22(5), 541–552.
https://doi.org/10.1260/0958-305X.22.5.541

2.       Ots, A. Estonian oil shale properties and utilization in power plants. Energetika, 2007, 53(4), 8–18.

3.       Valgma, I., Reinsalu, E., Sabanov, S., Karu, V. Quality control of oil shale production in Estonian mines. Oil Shale, 2010, 27(3), 239–249.
https://doi.org/10.3176/oil.2010.3.05

4.       Gaft, M., Dvir, E., Modiano, H., Schone, U. Laser induced breakdown spectroscopy machine for online ash analyses in coal. Spectrochim. Acta B, 2008, 63(10), 1177–1182.
https://doi.org/10.1016/j.sab.2008.06.007

5.       Hahn, D. W., Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc., 2012, 66(4), 347–419.
https://doi.org/10.1366/11-06574

6.       Romero, E. C., De Saro, R. LIBS analysis for coal. In: Laser-Induced Breakdown Spectroscopy: Theory and Applications (Musazzi, S., Perini, U., eds). Springer, Berlin-Heidelberg, 2014, 511–529.
https://doi.org/10.1007/978-3-642-45085-3_19

7.       Redoglio, D., Golinelli, E., Musazzi, S., Perini, U., Barberis, F. A large depth of field LIBS measuring system for elemental analysis of moving samples of raw coal. Spectrochim. Acta Part B At. Spectrosc., 2016, 116, 46–50.

8.       Craparo, J., De Saro, R., Romero, C., Yao, Z., Whitehouse, A., Weisberg, A. Measuring thermal properties of coal with a commercial bench top LIBS system. In: Applied. Industrial Optics: Spectroscopy, Imaging and Metrology. AIO, 2012, 4–6.

9.       Yao, S., Lu, J., Dong, M., Chen, K., Li, J., Li, J. Extracting coal ash content from laser-induced breakdown spectroscopy (LIBS) spectra by multivariate analysis. Appl. Spectrosc., 2011, 65(10), 1197–1201.
https://doi.org/10.1366/10-06190

10.    Yuan, T., Wang, Z., Lui, S.-L., Fu, Y., Li, Z., Liu, J., Ni, W. Coal property analysis using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 2013, 28(7), 1045–1053.
https://doi.org/10.1039/c3ja50097g

11.    Chen, M., Yuan, T., Hou, Z., Wang, Z., Wang, Y. Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy. Spectrochim. Acta B, 2015, 112, 23–33.
https://doi.org/10.1016/j.sab.2015.08.003

12.    Birdwell, J. E., Washburn, K. E. Rapid analysis of kerogen hydrogen-to-carbon ratios in shale and mudrocks by laser-induced breakdown spectroscopy. Energ. Fuel., 2015, 29(11), 6999–7004.
https://doi.org/10.1021/acs.energyfuels.5b01566

13.    Washburn, K. E. Rapid geochemical and mineralogical characterization of shale by laser-induced breakdown spectroscopy. Org. Geochem., 2015, 8384, 114–117.
https://doi.org/10.1016/j.orggeochem.2015.03.004

14.    Sanghapi, H. K., Jain, J., Bol’shakov, A., Lopano, C., McIntyre, D., Russo, R. Determination of elemental composition of shale rocks by laser induced breakdown spectroscopy. Spectrochim. Acta B, 2016, 122, 9–14.
https://doi.org/10.1016/j.sab.2016.05.011

15.    Aints, M., Paris, P., Laan, M., Piip, K., Riisalu, H., Tufail, I. Determination of heating value of Estonian oil shale by laser-induced breakdown spectroscopy. J. Spectrosc., 2018, Article ID 4605925, 1–10.

16.    Paris, P., Piip, K., Lepp, A., Lissovski, A., Aints, M., Laan, M. Discrimination of moist oil shale and limestone using laser induced breakdown spectroscopy. Spectrochim. Acta B, 2015, 107, 61–66.
https://doi.org/10.1016/j.sab.2015.02.017

17.    Väli, E., Valgma, I., Reinsalu, E. Usage of Estonian oil shale. Oil Shale, 2008, 25(2S), 101–114.
https://doi.org/10.3176/oil.2008.2S.02

18.    O’Kelly, B. C. Oven-drying characteristics of soils of different origins. Dry. Technol., 2005, 23(5), 1141–1149.
https://doi.org/10.1081/DRT-200059149

19.    Wisbrun, R., Schechter, I., Niessner, R., Schroder, H., Kompa, K. L. Detector for trace elemental analysis of solid environmental samples by laser plasma spectroscopy. Anal. Chem., 1994, 66(18), 2964–2975.
https://doi.org/10.1021/ac00090a026

20.    Bolger, J. A. Semi-quantitative laser-induced breakdown spectroscopy for analysis of mineral drill core. Appl. Spectrosc., 2000, 54(2), 181–189.
https://doi.org/10.1366/0003702001949375

21.    Feng, J., Wang, Z., Li, Z., Ni, W. Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters. Spectrochim. Acta B, 2010, 65(7), 549–556.
https://doi.org/10.1016/j.sab.2010.05.004

22.    Senesi, G. S. Laser-induced breakdown spectroscopy (LIBS) applied to terrestrial and extraterrestrial analogue geomaterials with emphasis to minerals and rocks. Earth-Sci. Rev., 2014, 139, 231–267.
https://doi.org/10.1016/j.earscirev.2014.09.008

23.    Tucker, J. M., Dyar, M. D., Schaefer, M. W., Clegg, S. M., Wiens, R. C. Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis. Chem. Geol., 2010, 277(1–2), 137–148.
https://doi.org/10.1016/j.chemgeo.2010.07.016

24.    Bublitz, J., Dölle, C., Schade, W., Hartmann, A., Horn, R. Laser-induced breakdown spectroscopy for soil diagnostics. Eur. J. Soil Sci., 2001, 52(2), 305–312.
https://doi.org/10.1046/j.1365-2389.2001.00375.x

25.    Chen, M., Yuan, T. Hou, Z., Wang, Z., Wang, Y. Effects of moisture content on coal analysis using laser-induced breakdown spectroscopy. Spectrochim. Acta B, 2015, 112, 23–33.
https://doi.org/10.1016/j.sab.2015.08.003

26.    Kim, G., Kwak, J., Kim, K.-R., Lee, H., Kim, K.-W., Yang, H., Park, K. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS). J. Hazard. Mater., 2013, 263, 754–760.
https://doi.org/10.1016/j.jhazmat.2013.10.041

27.    Martens, H., Naes, T. Multivariate Calibration. John Wiley Sons, Chichester, 1989.

Shahlaei, M. Descriptor selection methods in quantitative structure–activity relationship studies: A review study. Chem. Rev., 2013, 113(10), 8093–8103.
https://doi.org/10.1021/cr3004339

 

Back to Issue