ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
MATHEMATICAL MODEL OF TWO-PHASE FLOWS LOADED WITH LIGHT AND HEAVY PARTICLES TO ANALYZE CFB PROCESSES; pp. 169–180
PDF | doi: 10.3176/oil.2011.1S.09

Authors
A. KARTUSHINSKY, A. SIIRDE, Ü. RUDI, A. SHABLINSKY
Abstract

Mathematical modeling of polydispersed (gas-solid particles) flow with light (ash) and heavy (corundum) particles is presented to analyze manifold pro­cess occurring in circulating fluidized beds (CFB). This study covers the process of turbulent mixing of particle and particle-particle collision, particle-surface collision and pertains the gravitation and viscous drag and lift forces. The 2D RANS (Reynolds Averaged Navier-Stokes) equations are used for numerical modeling of uprising polydispersed turbulent flow with implemented k-Lh model of closure. The flow domain is a round pipe with diameter of 30 mm and height of 100 calibers (pipe diameters). The flow (mean velocity up to 10 m/s) carries two fractions of ash particles (material density of 1020 kg/m3 and sizes of 0.25 and 0.4 mm) and corundum particles (material density of 4000 kg/m3 and size 0.4 mm). Two mass loadings – 5 and 10 kg/kg – were considered.
    The results are presented in the form of distribution of axial and radial velocity components of gaseous and solid phases, particle mass concentra­tion and kinetic turbulent energy along the flow height at steady-state flow cross-sections.

References

  1. Ots, A. Oil Shale Fuel Combustion. – Tallinn, 2006. 833 pages.

  2. Kartushinsky, A., Martins, A., Rudi, Ü., Shcheglov, I., Tisler, S., Krupenski, I., Siirde, A. Numerical simulation of uprising gas-solid particle flow in circulating fluidized bed // Oil Shale. 2009. Vol. 26, No. 2. P. 125–138.

  3. Hussainov, M., Kartushinsky, A., Mulgi, A., Rudi, Ü. Gas-solid flow with the slip velocity of particles in a horizontal channel // J. Aerosol. Sci. 1996. Vol. 27, No. 1, P. 41–59.
doi:10.1016/0021-8502(95)00052-6

  4. Frishman, F., Hussainov, M., Kartushinsky, A., Mulgi, A. Numerical simulation of a two-phase turbulent pipe-jet flow loaded with polydispersed solid admixture // Int. J. Multiphas. Flow. 1997. Vol. 23, No. 4. P. 765–796.
doi:10.1016/S0301-9322(97)00017-7

  5. Ferziger, J. H., Perić, M. Computational Methods for Fluid Dynamics. – New York: Springer-Verlag, 1995. 356 p.

  6. Helland, E., Occelli, R., Tadrist, L. Numerical study of cluster formation in a gas-particle circulating fluidized bed // Powder Technol. 2000. Vol. 110, No. 3. P. 210–221.
doi:10.1016/S0032-5910(99)00260-0

  7. Sommerfeld, M. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence // Int. J. Multiphas. Flow. 2001. Vol. 27, No. 10. P. 1829–1858.
doi:10.1016/S0301-9322(01)00035-0

  8. Pfeffer, R., Rosetti, S. Licklein, S. Analysis and correlation of heat transfer coefficient and friction factor data for dilute gas–solid suspensions. – NASA rep. TND-3603, 1966.

  9. Michaelides, E. E. A model for the flow of solid particles in gases // Int. J. Multiphas. Flow, 1983, Vol. 10, No. 1. P. 61–77.
doi:10.1016/0301-9322(83)90060-5

10. Crowe, C. T. On models for turbulence modulation in fluid-particle flows // Int. J. Multiphas. Flow. 2000. Vol. 26, No. 5. P. 719–727.
doi:10.1016/S0301-9322(99)00050-6

11. Kartushinsky, A., Michaelides, E. E. An analytical approach for the closure equations of gas-solid flows with inter-particle collisions // Int. J. Multiphas. Flow. 2004. Vol. 30, No. 2. P. 159–180.
doi:10.1016/j.ijmultiphaseflow.2003.10.007

12. Kartushinsky, A., Michaelides, E. E. Particle-laden gas flow in horizontal channels with collision effects // Powder Technol. 2006. Vol. 168, No. 2. P. 89–103.
doi:10.1016/j.powtec.2006.06.008

13. Kartushinsky, A., Michaelides, E. E., Hussainov, M. T., Rudi, Y. Effects of the variation of mass loading and particle density in gas-solid particle flow in pipes // Powder Technol. 2009. Vol. 193, No. 2. P. 176–181.
doi:10.1016/j.powtec.2009.03.013

14. Michaelides, E. E. Particles, Bubbles & Drops: Their Motion, Heat and Mass Transfer. – World Scientific Publishers, New Jersey, 2006.
doi:10.1142/9789812774316

15. Zaichik, L. I., Alipchenkov, V. M. Statistical models for predicting particle dispersion and preferential concentration in turbulent flows // Int. J. Heat Fluid Flow. 2005. Vol. 26, No. 3. P. 416–430.
doi:10.1016/j.ijheatfluidflow.2004.10.001

Back to Issue