Mathematical modeling of polydispersed (gas-solid particles) flow with light (ash) and heavy (corundum) particles is presented to analyze manifold process occurring in circulating fluidized beds (CFB). This study covers the process of turbulent mixing of particle and particle-particle collision, particle-surface collision and pertains the gravitation and viscous drag and lift forces. The 2D RANS (Reynolds Averaged Navier-Stokes) equations are used for numerical modeling of uprising polydispersed turbulent flow with implemented k-Lh model of closure. The flow domain is a round pipe with diameter of 30 mm and height of 100 calibers (pipe diameters). The flow (mean velocity up to 10 m/s) carries two fractions of ash particles (material density of 1020 kg/m3 and sizes of 0.25 and 0.4 mm) and corundum particles (material density of 4000 kg/m3 and size 0.4 mm). Two mass loadings – 5 and 10 kg/kg – were considered.
The results are presented in the form of distribution of axial and radial velocity components of gaseous and solid phases, particle mass concentration and kinetic turbulent energy along the flow height at steady-state flow cross-sections.
1. Ots, A. Oil Shale Fuel Combustion. – Tallinn, 2006. 833 pages.
2. Kartushinsky, A., Martins, A., Rudi, Ü., Shcheglov, I., Tisler, S., Krupenski, I., Siirde, A. Numerical simulation of uprising gas-solid particle flow in circulating fluidized bed // Oil Shale. 2009. Vol. 26, No. 2. P. 125–138.
3. Hussainov, M., Kartushinsky, A., Mulgi, A., Rudi, Ü. Gas-solid flow with the slip velocity of particles in a horizontal channel // J. Aerosol. Sci. 1996. Vol. 27, No. 1, P. 41–59.
doi:10.1016/0021-8502(95)00052-6
4. Frishman, F., Hussainov, M., Kartushinsky, A., Mulgi, A. Numerical simulation of a two-phase turbulent pipe-jet flow loaded with polydispersed solid admixture // Int. J. Multiphas. Flow. 1997. Vol. 23, No. 4. P. 765–796.
doi:10.1016/S0301-9322(97)00017-7
5. Ferziger, J. H., Perić, M. Computational Methods for Fluid Dynamics. – New York: Springer-Verlag, 1995. 356 p.
6. Helland, E., Occelli, R., Tadrist, L. Numerical study of cluster formation in a gas-particle circulating fluidized bed // Powder Technol. 2000. Vol. 110, No. 3. P. 210–221.
doi:10.1016/S0032-5910(99)00260-0
7. Sommerfeld, M. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence // Int. J. Multiphas. Flow. 2001. Vol. 27, No. 10. P. 1829–1858.
doi:10.1016/S0301-9322(01)00035-0
8. Pfeffer, R., Rosetti, S. Licklein, S. Analysis and correlation of heat transfer coefficient and friction factor data for dilute gas–solid suspensions. – NASA rep. TND-3603, 1966.
9. Michaelides, E. E. A model for the flow of solid particles in gases // Int. J. Multiphas. Flow, 1983, Vol. 10, No. 1. P. 61–77.
doi:10.1016/0301-9322(83)90060-5
10. Crowe, C. T. On models for turbulence modulation in fluid-particle flows // Int. J. Multiphas. Flow. 2000. Vol. 26, No. 5. P. 719–727.
doi:10.1016/S0301-9322(99)00050-6
11. Kartushinsky, A., Michaelides, E. E. An analytical approach for the closure equations of gas-solid flows with inter-particle collisions // Int. J. Multiphas. Flow. 2004. Vol. 30, No. 2. P. 159–180.
doi:10.1016/j.ijmultiphaseflow.2003.10.007
12. Kartushinsky, A., Michaelides, E. E. Particle-laden gas flow in horizontal channels with collision effects // Powder Technol. 2006. Vol. 168, No. 2. P. 89–103.
doi:10.1016/j.powtec.2006.06.008
13. Kartushinsky, A., Michaelides, E. E., Hussainov, M. T., Rudi, Y. Effects of the variation of mass loading and particle density in gas-solid particle flow in pipes // Powder Technol. 2009. Vol. 193, No. 2. P. 176–181.
doi:10.1016/j.powtec.2009.03.013
14. Michaelides, E. E. Particles, Bubbles & Drops: Their Motion, Heat and Mass Transfer. – World Scientific Publishers, New Jersey, 2006.
doi:10.1142/9789812774316
15. Zaichik, L. I., Alipchenkov, V. M. Statistical models for predicting particle dispersion and preferential concentration in turbulent flows // Int. J. Heat Fluid Flow. 2005. Vol. 26, No. 3. P. 416–430.
doi:10.1016/j.ijheatfluidflow.2004.10.001