ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Evaluation of oil shale resources based on geochemistry and logging in Tuanyushan, Qaidam Basin, Northwest China; pp. 188–206
PDF | 10.3176/oil.2020.3.02

Authors
Jun-Xian Wang, Ping-Chang Sun, Junxian Wang, Zhao-Jun Liu, Yin-Bo Xu, Li Li
Abstract

In this study, oil shale resources in the Middle Jurassic Shimengou Formation in the Tuanyushan area along the northern margin of the Qaidam Basin in Northwest China are evaluated. The total organic carbon (TOC) content of oil shale in the study area is positively correlated with resistivity and negatively correlated with acoustic travel time and natural gamma. Based on TOC and oil yield, as well as the log response differences between the resistivity logging curve, the natural gamma logging curve and the acoustic travel time logging curve of mudstone with differing TOC contents, ΔlogR and stepwise regression models can be created to quantitatively determine the TOC content of oil shale. The results of the two prediction models and the measured values show the mean absolute deviation (MAD) of the ΔlogR model to be 0.95 wt% and the coefficient of determination, R2, 0.67. The MAD of the stepwise regression model is 1.15 wt% and R2 is 0.54. Of these two prediction models, the ΔlogR model has a higher recognition ability, but the predicted results are easily disturbed by silty mudstone. Therefore, the stepwise regression model is used to quantitatively identify oil shale resources in the study area. The comparison of the predicted and measured oil yields of oil shale from exploratory wells shows their R2 to be 0.49. This suggests that in the whole study area, oil shale resources can be identified by the logging curve. Based on log interpretation, the volume method is used to estimate the area’s oil shale resources. The results show the oil shale resources in this area to total 392 million tons and converted shale oil resources 24 million tons.

References

Liu, Z. J., Meng, Q. T., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Jia, J. L. Characteristics and resource potential of oil shale in China. Oil Shale, 2017, 34(1), 15–41.
https://doi.org/10.3176/oil.2017.1.02

Schmoker, J. W. Determination of organic content of Appalachian Devonian shales from formation-density logs 1: Geologic notes. AAPG Bull., 1979, 63(9), 1504–1509.
https://doi.org/10.1306/2F9185D1-16CE-11D7-8645000102C1865D

Fertl, W. H., Rieke, H. H. Gamma ray spectral evaluation techniques identify fractured shale reservoirs and source-rock characteristics. J. Petrol. Technol, 1980, 32(11), 2053–2062.
https://doi.org/10.2118/8454-PA

Meyer, B. L., Nederlof, M. H. Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity crossplots. AAPG Bull., 1984, 68(2), 121–129.
https://doi.org/10.1306/AD4609E0-16F7-11D7-8645000102C1865D

Mendelson, J. D., Toksoz, M. N. Source rock characterization using multivariate analysis of log data. SPWLA 26th Annual Logging Symposium, 17–20 June 1985, Dallas, Texas, Paper UU.

Autric, A., Dumesnil, P. Resistivity, radioactivity and sonic transit time logs to evaluate the organic content of low permeability rocks. The Log Analyst, 1985, 26(3), 36–45.

Hussain, F. A. Source rock identification in the state of Kuwait using wireline logs. SPE Formation Evaluation, SPE Paper 15747, 1987, 477–488.
https://doi.org/10.2118/15747-MS

Passey, Q. R., Creaney, S., Kulla, J. B., Moretti, F. J., Stroud, J. D. A practical model for organic richness from porosity and resistivity logs. AAPG Bull., 1990, 74(12), 1777–1794.
https://doi.org/10.1306/0C9B25C9-1710-11D7-8645000102C1865D

Huang, Z., Williamson, M. A. Artificial neural network modelling as an aid to source rock characterization. Mar. Petrol. Geol., 1996, 13(2), 277–290.
https://doi.org/10.1016/0264-8172(95)00062-3

Yang, Y., Aplin, A. C., Larter, S. R. Quantitative assessment of mudstone lithology using geophysical wireline logs and artificial neural networks. Petrol. Geosci., 2004, 10(2), 141–151.
https://doi.org/10.1144/1354-079302-566

Mahmoud, A. A. A., Elkatatny, S., Mahmoud, M., Abouelresh, M., Abdulraheem, A., Ali, A. Determination of the total organic carbon (TOC) based on conventional well logs using artificial neural network. Int. J. Coal Geol., 2017, 179, 72–80.
https://doi.org/10.1016/j.coal.2017.05.012

Hu, H. T., LuS. F., Liu, C., Wang, W. M., Wang, M., Li, J. J., Shang, J. H. Models for calculating organic carbon content from logging information: Comparison and analysis. Acta Sedimentol. Sin., 2011, 29(6), 1199–1205 (in Chinese with English abstract).

Jia, J. L., Liu, Z. J., Meng, Q. T., SunP. C., Chen, Y. C. Quantitative evaluation of oil shale based on well log and 3-D seismic technique in the Songliao Basin, Northeast China. Oil Shale, 2012, 29(2), 128–150.
https://doi.org/10.3176/oil.2012.2.04

Lu, J., Shao, L. Y., JuQ., LiuT. J., WenH. J., LiY. H., ZhangF .D., GaoD. Y. Coal petrography variation in the sequence stratigraphic frame of the Jurassic coal measures of Dameigou mine area in Northern Qaidam Basin. Coal Geology and Exploration, 2009, 37(4), 9–14 (in Chinese with English abstract).

Li, M., Shao, L. Y., LiuL., Lu, J., Spiro, B., Wen, H. J., LiY. H. Lacustrine basin evolution and coal accumulation of the Middle Jurassic in the Saishiteng coalfield, northern Qaidam Basin, China. J. Palaeogeogr., 2016, 5(3), 205–220.
https://doi.org/10.1016/j.jop.2016.03.001

ASTM D3904-80. Standard Test Method for Oil from Oil Shale. American Society for Testing and Materials, West Conshohocken, PA, 1984.

Espitalié, J., Laporte, J. L., MadecM., Marquis, F., Leplat, P., Paulet, J., Boutefeu, A. Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d’évolution. Rev. I. Fr. Pétrol., 1977, 32(1), 23–42 (in French).
https://doi.org/10.2516/ogst:1977002

Meng, Q. T., LiuZ. J., SunP. C., XuY. B., LiF., BaiY. Y., XieW. Q., DengS., SongS., WangK. B., XuC. Characteristics and accumulation of Middle Jurassic oil shale in the Yuqia area, Northern Qaidam Basin, Northwest China. Oil Shale, 2018, 35(1), 1–25.
https://doi.org/10.3176/oil.2018.1.01

Liu, Z. J., Yang, H. L., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Meng, Q. T., Zhang, H. L., Gan, S. C. Oil Shale in China. Petroleum Industry Press, Beijing, 2009, 62–116 (in Chinese, summary in English).

Landais, P. Organic geochemistry of sedimentary uranium ore deposits. Ore Geol. Rev., 1996, 11(1–3), 33–51.
https://doi.org/10.1016/0169-1368(95)00014-3

Xie, W. Q., Liu, Z. J., Xiao, L. J., Song, S., Liu, J. L. Oil shale resource potential of the Middle Jurassic Shimengou Formation in Yuka of the North Rim in Qaidam Basin. Special Oil and Gas Reservoirs, 2018, 25(5), 78–83 (in Chinese, summary in English).

Fan, J. J., Wang, Y. B., Li, Y. H. Log evaluation and target zone optimization of Jurassic oil shale in Yuqia Area. Well Logging Technology, 2016, 40(5), 617–622 (in Chinese, summary in English).

McCrossan, R. G. Resistivity mapping and petrophysical study of Upper Devonian inter-reef calcareous shales of central Alberta, Canada. AAPG Bull., 1961, 45(4), 441–470.
https://doi.org/10.1306/BC74366B-16BE-11D7-8645000102C1865D

Kaiser, K., Zech, W. Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J. Plant Nutr. Soil Sc., 2000, 163(5), 531–535.
https://doi.org/10.1002/1522-2624(200010)163:5<531::AID-JPLN531>3.0.CO;2-N

Sarmiento, R. Geological factors influencing porosity estimates from velocity logs. AAPG Bull., 1961, 45(5), 633–644.
https://doi.org/10.1306/BC743683-16BE-11D7-8645000102C1865D

GB/T13908-2002. General requirements for solid mineral exploration. The State Standards of the People’s Republic of China, 2003 (in Chinese)..

Back to Issue