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Abstract. In this study, oil shale resources in the Middle Jurassic Shimengou 
Formation in the Tuanyushan area along the northern margin of the Qaidam 
Basin in Northwest China are evaluated. The total organic carbon (TOC) 
content of oil shale in the study area is positively correlated with resistivity 
and negatively correlated with acoustic travel time and natural gamma. Based 
on TOC and oil yield, as well as the log response differences between the 
resistivity logging curve, the natural gamma logging curve and the acoustic 
travel time logging curve of mudstone with differing TOC contents, ΔlogR and 
stepwise regression models can be created to quantitatively determine the TOC 
content of oil shale. The results of the two prediction models and the measured 
values show the mean absolute deviation (MAD) of the ΔlogR model to be  
0.95 wt% and the coefficient of determination, R2, 0.67. The MAD of the 
stepwise regression model is 1.15 wt% and R2 is 0.54. Of these two prediction 
models, the ΔlogR model has a higher recognition ability, but the predicted 
results are easily disturbed by silty mudstone. Therefore, the stepwise 
regression model is used to quantitatively identify oil shale resources in the 
study area. The comparison of the predicted and measured oil yields of oil 
shale from exploratory wells shows their R2 to be 0.49. This suggests that in 
the whole study area, oil shale resources can be identified by the logging curve. 
Based on log interpretation, the volume method is used to estimate the area’s 
oil shale resources. The results show the oil shale resources in this area to total 
392 million tons and converted shale oil resources 24 million tons.
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1. Introduction

China ranks second in the world for oil shale resources, which primarily 
originate in continental lake basins. Oil shale strata are widely distributed and 
range in age from the Late Palaeozoic to the Cenozoic [1]. Although China is 
rich in oil shale resources, due to the low fluctuation of international oil prices 
and insufficient technological developments in recent years, the resource 
utilisation rate is low. The primary methods of development are open-pit and 
underground mining, and the oil product is obtained through dry distillation 
on the ground. At present, logging technology is being widely applied to the 
evaluation of hydrocarbon source rocks. Schmoker [2] identified total organic 
carbon (TOC) content in source rocks through density logging. Fertl and Rieke 
[3] evaluated fractured shale reservoirs and source rocks by using gamma 
spectrometry logging. Meyer and Nederlof [4] established linear relationships 
to identify source rocks through density-resistivity and acoustic travel time-
resistivity intersection diagrams. Mendelson and Toksoz [5], Autric and 
Dumesnil [6] and Hussain [7] employed acoustic, resistivity, natural gamma 
and neutron density logging methods to identify source rocks through multiple 
regression, and Passey et al. [8] established the ΔlogR method to identify 
hydrocarbon source rocks by logging. In the ΔlogR method, the porosity log 
curve (acoustic, density, neutron) and the logarized resistivity logging curve 
overlap in the resulting picture. Based on the opposite direction of the two 
curves after superposition, as well as TOC test results, the correlation formula 
is constructed in the current paper to achieve the required prediction. In 
addition, Huang and Williamson [9], Yang et al. [10] and Mahmoud et al. [11] 
used an artificial neural network to quantitatively evaluate source rocks, while 
Hu et al. [12] and Jia et al. [13] applied the ΔlogR method to quantitatively 
identify oil shale. In general, there can be differentiated four types of oil shale 
logging identification methods: single factor prediction devised by Schmoker 
[2] and Fertl and Rieke [3], multivariate regression prediction introduced by 
Mendelson and Toksoz [5], ΔlogR method developed by Passey et al. [8] and 
artificial neural networks created by Huang and Williamson [9].

Different basins have different geological backgrounds and source rock 
characteristics, which requires the use of different logging models to predict 
TOC content. Therefore, it is necessary to create a TOC logging prediction 
model specifically for each study area. The Middle Jurassic Shimengou 
Formation, located along the northern margin of the Qaidam Basin, is 
characterised by thick oil shale deposits, a low degree of exploration and 
the lack of commercial development. Considering this, oil shale logging 
identification and evaluation is a suitable means for early TOC prediction. 
Model construction and resource prediction will serve as a basis for further 
exploration of oil shale in the Qaidam Basin.
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2. Geological setting

This study focuses on the Tuanyushan area, a narrow northwest-southeast 
trending belt with an area of 280 km2, which is located within the Saishiteng 
Piedmont Depression in the Northern Fault Block Belt in the Qaidam Basin, 
Northwest China (Fig. 1a, 1b, 1c). The Middle Jurassic stratum in the study 
area may be up to 1 km thick and consists of the Lower Dameigou Formation 
and the Upper Shimengou Formation [14]. The Dameigou Formation is 
composed mainly of coarse-to-fine siliceous clastic rocks and contains two 
exploitable coal seam horizons [15]. The Shimengou Formation is the main 
oil shale sedimentary stratum and can be further divided into the Lower Coal-
bearing Member (J2Sh1) and the Upper Shale Member (J2Sh2). The Coal-
bearing Member (J2Sh1) is composed mostly of grey-white medium-to-coarse 
sandstone, grey siltstone, silty mudstone and carbonaceous shale, with three 
exploitable coal seam horizons. The Shale Member (J2Sh2) is dominated by 
grey-brown to grey-black oil shale, grey mudstone and grey-green mudstone 
and siltstone.

3. Samples and methods

Well QCD-2 drilled in the southwestern part of the study area in 2016 revealed 
the complete formation of J2Sh2. The well contained a complete coring with 
logging, including resistivity, acoustic, density and natural gamma logging 
curves. Oil shale and mudstone samples were taken at depths of 65 to 270 m. 
Thirty mixed samples taken at every meter were selected for TOC and oil 
yield tests. Based on coring from this well, a model of oil shale identification 
by logging was constructed. In addition, wells Y24-2 and KT-23 were selected 
to carry out point sample oil yield tests, with the test points totalling 65, to 
verify the accuracy of the model. The oil yield from the low-temperature 
retorting at about 520 °C was measured by Fischer assay in a Fushun retort 
[16]. The total organic carbon (TOC) was determined in samples pre-treated 
with concentrated HCI by using a Leco CS-230 elemental analyser [17]. 
Pyrolysis was carried out using a Rock-Eval 6. Depending on TOC content, 
10–50 mg of pulverized sample (≤ 200 mesh) was gradually heated in an 
inert atmosphere. The quantity of pyrolyzate (mg HC/g rock) generated from 
kerogen during gradual heating in a helium stream was normalized to TOC, to 
give the hydrogen index (HI = S2 × 100/TOC; in mg HC/g TOC) [17].

In this study, some geochemical data about mudstone and oil shale to 
construct the logging identification model were taken from [18], and the depth 
was confirmed or corrected before model construction.
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4. Characteristics of oil shale

The primary lithology of the Shimengou Formation shale is grey-black 
mudstone, silty mudstone and siltstone. Oil shale in J2Sh2 is grey-black and 
grey-brown (Fig. 2a). Horizontal and rhythmic beddings are widely developed 
(Fig. 2b). Oil shale and grey-black mudstone in this section have similar 
macroscopic characteristics, but their TOC and oil yields are different.

Fig. 2. Lithologic characteristics of oil shale deposited in J2Sh2.

Stratum Depth,
m

S1,
mg/g

S2,
mg/g

HI,
mg HC/ 
g TOC

Tmax,
°C

TOC,
wt%

Oil yield,
wt%

Density,
g/cm3

J2Sh2 Well 
QCD-2

169.3 0.24 65.71 678.82 437 9.68 6.5 -

171.1 0.70 34.67 549.45 433 6.31 3.8 -

172.0 0.17 84.22 735.55 433 12.88 7.2 1.99

178.5 0.21 97.92 842.69 429 11.32 8.0 -

182.0 0.52 69.67 705.88 435 9.87 6.3 1.87

192.1 1.26 71.42 850.23 440 8.4 6.1 2.0

176.1 0.21 52.21 523.50 435 6.67 4.3 1.84

179.1 0.12 46.54 624.70 430 7.45 4.4 1.92

183.58 0.45 47.83 607.75 433 7.87 4.2 -

225.9 1.82 91.61 902.51 430 10.15 5.5 1.87

Table. Organic geochemical and industrial characteristics of oil shale in the 
northern Qaidam Basin
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Oil shale grading is defined by Liu et al. [19] as shale with an oil yield  
> 3.5% and TOC > 5.0%. The TOC content of oil shale samples from J2Sh2 
ranges from 6.3 to 12.9 wt% (average 9.0 wt%). The S1 + S2 content ranges 
from 35 to 98 mg/g (average 49 mg/g). HI values vary between 550 and  
903 mg HC/g TOC (average 732 mg HC/g TOC; Table). The organic matter 
of oil shale is of Type I and Type II1 (Fig. 3a, 3b), indicating that its main 
sources are algae and other aquatic organisms. Tmax is from 429 °C to 440 °C. 
The TOC of mudstone and carbonaceous mudstone samples from J2Sh2 ranges 
from 1.1 to 6.8 wt% (average 4.1 wt%; data from [18]). HI values vary between 
94 and 845 mg HC/g TOC (average 437 mg HC/g TOC). The organic matter 
is dominated by Type II1, followed by Type I. Tmax is from 423 °C to 439 °C. 
The oil yield of both oil shale and mudstone demonstrates a good linear 
relationship with TOC, R2 being 0.83 (Fig. 3c).

The TOC and hydrocarbon generation potential of J2Sh2 oil shale are 
higher than those of mudstone, though both display similar macroscopic and 
organic geochemical characteristics, indicating that oil shale undergoes a 
certain change.

Fig. 3. a) Plot of HI vs Tmax; b) plot 
of S2 vs TOC, outlining the types of 
kerogen in oil shale samples from 
the J2Sh2 area of the Shimengou 
Formation; c) cross-plot of TOC vs 
oil yield of oil shale from the J2Sh2 

area of the Shimengou Formation.

(a) (b)

(c)
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5. Logging evaluation

5.1. Logging characteristics of oil shale

Oil shale is mainly composed of terrigenous clastic and organic matter, which 
have different logging responses. The content of organic matter determines 
the quality of oil shale and is clearly reflected on the logging curves of 
resistivity, density and natural gamma [4]. Therefore, this paper establishes 
a logging recognition model and evaluates its potential use for J2Sh2 oil shale 
identification.

5.1.1. Natural gamma-ray logging

Fine-grained sedimentary rocks usually have a high content of clay 
minerals. Compared with clastic minerals, the specific surface area of clay 
minerals and their capacity to adsorb radioactive elements are higher [7]. In 
comparison with mudstone and siltstone with low organic carbon content, 
the clay minerals content of oil shale is higher [13], so, its natural gamma 
is high. However, the radioactive elements content of sedimentary rocks is 
greatly affected by the geological conditions of the source area, hence, this 
content varies significantly by region. In addition, the paleo-oxygen facies 
of sedimentary environments also considerably influences the content of one 
of the major radioactive elements, uranium. The changes of the sedimentary 
environment in the stratum can cause the vertical change of the natural gamma 
logging value in it [20]. It is worth noting that in comparison with mudstone, 
the natural gamma value of oil shale in the study area is relatively low. This 
conflicts with the general understanding that oil shale adsorbs radioactive 
elements due to its high content of organic matter. The same can be observed 
in oil shale samples from the Yuka area of the northern Qaidam Basin [21, 22]. 
This may be caused by the low content of radioactive elements in the source 
rock during the sedimentation period of the Shimengou Formation. The 
natural gamma value of oil shale in the study area is negatively correlated 
with TOC content, R2 = 0.24 (Fig. 4a). This linear relationship can be used to 
quantitatively identify oil shale.

5.1.2. Resistivity logging

Mudstone contained in sedimentary strata, except calcareous mudstone, tends 
to display low resistivity due to its high content of water. Many studies have 
shown clay minerals to exhibit a high capacity to adsorb organic matter. With 
increasing clay mineral content in sedimentary rocks, their organic matter 
content also increases [23]. In addition, in a warm and humid paleoclimate, the 
strong biological and chemical weathering causes the increase of clay mineral 
content in the sediment. The warm and humid climate is also conducive to the 
introduction of exogenous organic matter into the lake and improvement of its 
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productivity. As a result, the sediment’s organic matter content increases. With 
increasing content of organic matter, bound water in clay pores will be partly 
replaced by it [24], while the organic conductivity is extremely low, hence, 
the resistivity of oil shale and coal seams is high. The resistivity of sediments 
in the study area is linearly and positively correlated with their TOC content, 
R2 being 0.18 (Fig. 4b). This relationship can be used as one of the main 
parameters for logging evaluation.

5.1.3. Acoustic travel time logging

In conventional geological formations, sonic logging is affected by lithology, 
fluid properties and porosity. When the grain size of the sediment is fine, the 
clay mineral content is high and there is no brittle mineral, the sonic logging 
is mainly affected by pores and hydrocarbon fluids. However, oil shale has 
no larges pores and immature oil shale is not influenced by hydrocarbon 
fluids. Therefore, the sonic logging response of oil shale generally depends 
on the change of its composition [25]. The acoustic travel time of mudstone 
decreases as the burial depth increases, but organic matter is a medium that 
is not conducive to acoustic wave transmissions. The acoustic travel time 
of mudstone is longer than that of rock skeletons. Therefore, organic matter 
content is often negatively correlated with acoustic travel time. Acoustic travel 
time, however, is affected by the degree of borehole wall collapse. When using 
the logging data, it is therefore necessary to eliminate the logging values at 
the collapse site. The acoustic travel time measured within the study area is 
negatively correlated with TOC (Fig. 4c).

5.1.4. Density logging

The density of organic matter contained in a sedimentary rock is relatively 
low, about 1.0 g/cm3, while the skeleton density of the sedimentary rock is 
relatively high, approximately 2.7 g/cm3. With its high content in a source 
rock, the density of organic matter is low, and there exists an obvious negative 
linear correlation between the two. Therefore, the density logging is often 
used as one of the main parameters to evaluate the logging of hydrocarbon 
source rocks. However, within the study area, the correlation between density 
logging parameters and TOC content is not obvious (Fig. 4d). This may be 
due to faults and differential compaction, which contribute to an uneven 
distribution of the density of sediments. This conclusion can be confirmed by 
the frequent occurrence of the structural fracture zone and a wide formation 
dip angle (up to 67 °). Therefore, the density logging is not used as one of the 
parameters for this logging prediction model.
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5.2. Logging evaluation of oil shale

5.2.1. ΔlogR recognition model

The ΔlogR method is used to superpose the porosity logging curve (acoustic, 
density and natural gamma-ray) on the logarized resistivity logging curve [8]. 
The overlapping segment represents the non-oil shale section, which is used as 
a baseline. In addition, the lithology at the baseline must be composed of fine-
grained sediments, such as mudstone or silty mudstone, from non-source rock. 
The TOC value at the baseline is equivalent to the background value, and the 
ΔlogR value is equal to 0. The superposition of natural gamma and resistivity 
curves enables distinguishing oil shale and can be used as the first choice for 
the ΔlogR model, though siltstone displays a logging response similar to oil 
shale’s in this model, which can interfere with the prediction results (Fig. 5a). 
However, the effect of acoustic travel time and density logging on lithologic 
differentiation is not as high as that of natural gamma (Fig. 5b, 5c), so these 
two models are not considered.

Fig. 5. Logging curve intersection 
diagram showing the intersections 
between: a) RLLD and GR, b) 
RLLD and AC, c) RLLD and DEN. 
(Abbreviations: RLLD – resistivity; 
GR – natural gamma; AC – acoustic 
travel time; DEN – density.)

(a) (b)

(c)

Evaluation of oil shale resources based on geochemistry and logging ...
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Fig. 6. Lithology and logging interpretation of the sample from well QCD-2.
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A quantitative evaluation of TOC content using the ΔlogR method can 
determine the baseline, which is the zero point of this model. The TOC of 
mudstone and siltstone samples ranges from 0.5 to 6.8 wt% (average 4.0 wt%). 
The baseline is selected at the point of the lowest TOC of the fine-grained 
rocks section where it is between 0.5 and 1.9 wt% (Fig. 6a). The empirical 
ΔlogR formula is as follows:

ΔlogR = log(R/Rbaseline) + K(GR–GRbaseline),                        (1)

where ΔlogR represents the value differences between the logarized resistivity 
curve and the natural gamma curve; Rbaseline and GRbaseline represent the baseline 
log values of the resistivity curve and the natural gamma curve, respectively; R 
represents the resistivity value, Ω·m; GR represents the natural gamma value, 
in American Petroleum Institute (API) units; and the superposition coefficient 
K = 0.02 is based on the ratio of 50 API to one resistivity cycle, mentioned 
above as one empirical parameter. The resistivity curve of the baseline section 
ranges from 28 to 58 Ω·m, with an average of 38 Ω·m; the average is used as 
the baseline value, Rbaseline = 38 (Fig. 6a). The natural gamma-ray curve of the 
baseline section is from 59 to 87 API, with an average of 80 API; the average 
is used as the baseline value, GRbaseline = 75 (Fig. 6a). As the TOC of oil shale 
in the study area is negatively correlated with GR, K is –0.02. Accordingly, 
the ΔlogR calculation formula for the study area can be expressed as follows:

ΔlogR = log(R)–0.02 GR–0.08.                                      (2)

On this basis, combined with the TOC test results, the regression fitting of 
ΔlogR and TOC is written as follows:

TOC = 4.6859*ΔlogR + 0.89,                                        (3)

while R2 = 0.67.

There is a good correlation between TOC and ΔlogR; R2 is 0.67 and the 
mean absolute deviation (MAD) is 0.95 wt% (Fig. 7a). The TOC prediction 
results for well QCD-2 of J2Sh2 were obtained by introducing the above formula 
into the logging curve (Fig. 6). Within J2Sh2, the composition of organic-rich 
mudstone is similar to that of oil shale, except there is a difference in organic 
matter content between the two. Therefore, the ΔlogR amplitude of mudstone 
is similar to or slightly narrower than that of oil shale (Fig. 6b). Siltstone and 
argillaceous siltstone as mudstone interlayers also have a high resistivity and 
a low natural gamma (Fig. 6c), while their log response is similar to oil shale’s 
(Fig. 6d). The prediction results for siltstone and argillaceous siltstone give 
evidence of higher TOC values, indicating that the ΔlogR model for oil shale 
prediction has certain limitations and should be combined with appropriate 
joint judgment logging curves to eliminate the other rocks’ interference with 
prediction.

Evaluation of oil shale resources based on geochemistry and logging ...
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5.2.2. Stepwise regression model

In order to eliminate the siltstone and argillaceous siltstone’s interference 
with the identification of oil shale resources, a stepwise regression model to 
determine the oil yield on the basis of oil shale logging was established, to 
improve the accuracy of oil shale identification through logging. The stepwise 
regression model is an improved form of multivariate regression modelling 
that comprehensively considers resistivity, natural gamma, acoustic travel 
time and density logging curves, screens out parameters that reflect significant 
changes in organic matter content, and establishes a regression equation. This 
method can effectively introduce appropriate logging parameters and discard 
irrelevant ones. The combination of log parameters can make full use of the 
relevant information a suitable parameter carries to improve the model’s 
recognition ability [12]. Resistivity, natural gamma, acoustic travel time 
and density are identified as a, b, c and d, respectively, and the 14 combined 
parameters are identified as follows: a, b, c, d, a2, b2, c2, d2, ab, ac, ad, bc, bd 
and cd. In order to explore the causal relationships between these parameters, 
it is necessary to maintain the original dimension rather than normalise the 
data. In the stepwise regression model using the above parameters, oil yield 
is considered as a dependent variable. The oil yield of oil shale can then be 
directly predicted through this model as follows:

Ta = 0.0004129 ac–0.00131 b2 + 3.979,                       (4)

where Ta denotes oil yield. R2 = 0.54.

Differently from resistivity, natural gamma and acoustic travel time, 
density logging was not included in the model due to the low correlation  
(R2 = 0.03) between TOC and density of mudstone (Fig. 4d), presumably owing 
to the differential compaction because of fracture. P value is an indicator of 

Fig. 7. Relevance of logging prediction model: a) ΔlogR identification model; b) 
stepwise regression model.
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significance of the regression model in the Fisher test, so, the lower the P value 
is, the lower is the probability that the model’s recognition ability is caused by 
contingency. It is generally believed that P < 0.05 is significant, while P < 0.01 
is very significant. The P value of the Fisher test for the stepwise regression 
model established in this study is 0.00751, and the significance test shows 
the model to be highly effective. Its MAD is 1.15 wt% and R2 is 0.54 (Fig. 
7b). The predictive ability of the stepwise regression model is lower than that 
of the ΔlogR model, though the former can successfully avoid the siltstone 
interlayers’ interference with prediction and improve recognition accuracy 
(Fig. 6). Based on this finding, the stepwise regression model was used to 
evaluate oil shale resources in the study area.

5.2.3. Evaluation results

The stepwise regression model was applied to the identification and prediction 
of oil shale resources in the study area, and the results were compared with 
oil yield test results for oil shale samples from two full-core wells (Fig. 8a, 
8b). The model proved to be effective for identifying and predicting the area’s 
oil shale resources (R2 = 0.49) (Fig. 8c). Based on the prediction results for 
36 wells, the contour map for oil shale accumulated thickness and weighted 
average oil yield was drawn, showing the thickness to be between 5 and 
25 m (Fig. 9a). High cumulative thickness values are characteristic of the 
northwestern, central and southeastern regions of the study area. The contour 
map for oil yield indicates that oil shale is primarily of medium quality (Fig. 
9b). The trend of oil shale floor burial isoline shows its burial depth to be 
mostly less than 1,000 m and the stratum dip in the study area’s southeastern 
region to be large, resulting in a significant change in burial depth that ranges 
from 200 to 500 m (Fig. 9c).

According to the general requirements for solid mineral exploration  
(GB/T13908-2002) [26], the volume method is used to estimate oil shale 
resources. The calculation method is as follows:

Quantity of oil resource = Dʃʃʃf(x, y, z)dQ,                     (5)

where x and y represent the area and thickness of oil shale, respectively; 
the integral represents the volume of oil shale; and z represents oil yield. 
According to the density measurement results of the drainage method, the 
density of oil shale changes little, so the average value d = 1.95 is taken for 
resource estimation. The above calculation process is carried out in Double 
Fox software using the interpolation method.

Based on the calculation results, the resource volume of oil shale in the 
study area is 201 million m3, indicating that it contains 392 million tons of oil 
shale, or 24 million tons of converted shale oil.

Evaluation of oil shale resources based on geochemistry and logging ...
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Fig. 8. a) Well Y24-2 model verification; b) well KT-23 model verification; 
c) correlation of the stepwise regression model of measured wells.

(a) (b)

(c)
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Fig. 9. a) Cumulative thickness contour map of oil shale from J2Sh2; b) contour map 
of oil shale oil yield; c) contour map of oil shale burial depth.

(a)

(b)

(c)

Evaluation of oil shale resources based on geochemistry and logging ...

(a)

(b)

(c)
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6. Conclusions

1. Oil shale in the Shimengou Formation is characterised by high resistivity, 
high acoustic travel time and relatively low natural gamma, with one low 
and two high logging responses. Total organic carbon content is positively 
correlated with resistivity and acoustic travel time and negatively correlated 
with natural gamma, while there is no obvious correlation with density 
logging.

2. Based on the log response characteristics of oil shale, the ΔlogR 
identification model and the stepwise regression model are established. 
The mean absolute deviation of the ΔlogR model is 0.95 wt% and the 
coefficient of determination, R2, is 0.67, for the stepwise regression model 
the respective values are 1.15 wt% and 0.54. Of the two models, the 
ΔlogR model has a higher prediction ability, but its results are disturbed 
by siltstone. The stepwise regression model can eliminate the siltstone’s 
interference and make the prediction results more accurate.

3. According to the prediction results of the stepwise regression model and 
the logging curves for 36 wells, the cumulative thickness of oil shale in 
the Shimengou Formation is between 5 and 25 m and its burial depth is 
generally less than 1,000 m. The Formation’s total oil shale resource is  
392 million tons, or 24 million tons of converted shale oil.
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