Oil shales of various rank and origin from China, Estonia and the United States are investigated and their oxidation reactivities under simulated oxy-fuel combustion conditions, in air, and in 100% CO2 atmospheres explored. Independent of rank and origin, as the oil shale pyrolysis temperature increases, the oil shale semi-coke oxidation reactivity decreases. The oxidation reactivities in air and in simulated oxy-fuel oxidation atmospheres for all of the oil shale semi-cokes tested are more or less the same. Oil shale semi-coke oxidation reaction activation energies in an air atmosphere are similar to the activation energies obtained under the simulated oxy-fuel conditions. These findings are useful for optimizing retrofit of current oil shale-fired systems to oxy-fuel combustion conditions, particularly if they are to be fired with oil shale semi-coke from retorting processes.
Duncan, D. C., Swanson, V. E. Organic-Rich Shale of the United States and World Land Areas. Geological Survey Circular 523, Washington, 1965.
https://doi.org/10.3133/cir523
2. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193‒252.
3. Dyni, J. R. Geology and Resources of Some World Oil-Shale -Deposits. Scientific Investigation Report 2005-5294. U.S. Geological Survey, Reston, Virginia, 2006.
https://doi.org/10.3133/sir29955294
4. Han, X., Kulaots, I., Jiang, X.,Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143‒161.
https://doi.org/10.1016/j.fuel.2014.02.045
5. Sennoune, M., Salvador, S., Quintard, M. Reducing CO2 emissions from oil shale semicoke smoldering combustion by varying the carbonate and fixed carbon contents. Combust. Flame, 2011, 158(11), 2272‒2282.
https://doi.org/10.1016/j.combustflame.2011.04.004
6. U.S. Department of Energy, E.I.A., International Energy Statistics, Estonia. 2016.
7. Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R. D. Advances in CO2 capture technology ‒ The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Con., 2008, 2(1), 9‒20.
https://doi.org/10.1016/S1750-5836(07)00094-1
8. Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale. Prog. Energ. Combust., 2007, 33(6), 552–579.
https://doi.org/10.1016/j.pecs.2006.06.002
9. Loo, L., Konist, A., Neshumayev, D., Pihu, T., Maaten, B., Siirde, A. Ash and flue gas from oil shale oxy-fuel circulating fluidized bed combustion. Energies, 2018, 11(5), 1218.
https://doi.org/10.3390/en11051218
10. Komaki, A., Goto, T., Uchida, T., Yamada, T., Kiga, T., Spero, C. Operational results of oxyfuel power plant (Callide Oxyfuel Project). Mechani-cal Engineering Journal, 2016, 3(6), 16-00342.
https://doi.org/10.1299/mej.16-00342
11. Wu, X. D., Yang, Q., Chen, G. Q., Hayat, T., Alsaedi, A. Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600 MW retrofitted oxyfuel power plant as a case study. Renew. Sust. Energ. Rev., 1274–1285.
https://doi.org/10.1016/j.rser.2016.03.015
12. Buhre, B. J. P., Elliot, L. K., Sheng, C. D., Gupta, R. P., Wall, T. F. Oxy-fuel combustion technology for coal-fired power generation. Prog. Energ. Combust., 2005, 31(4), 283‒307.
https://doi.org/10.1016/j.pecs.2005.07.001
13. Wall, T., Liu, Y. H., Spero, C., Elliott, L., Khare, S., Rathnam, R., Gani, Z. F. A., Moghtaderi, B., Buhre, B., Sheng, C. D., Gupta, R., -Yamada, T., Makino, K., Yu, J. L. An overview on oxyfuel coal combustion ‒ State of the art research and technology development. Chem. Eng. Res. Des., 2009, 87(8), 1003‒1016.
https://doi.org/10.1016/j.cherd.2009.02.005
14. Wall, T. F. Combustion processes for carbon capture. P. Combust. Inst., 2007, 31(1), 31‒47.
https://doi.org/10.1016/j.proci.2006.08.123
15. Zhang, J., Ito, T., Ito, S., Riechelmann, D., Fujimori, T. Numerical investigation of oxy-coal combustion in a large-scale furnace: Non-gray effect of gas and role of particle radiation. Fuel, 2015, 139, 87‒93.
https://doi.org/10.1016/j.fuel.2014.08.020
16. Fujimori, T., Yamada, T. Realization of oxyfuel combustion for near zero emission power generation. P. Combust. Inst., 2013, 34(2), 2111‒2130.
https://doi.org/10.1016/j.proci.2012.10.004
17. Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., Jensen, A. D. Oxy-fuel combustion of solid fuels. Prog. Energ. Combust., 2010, 36(5), 581‒625.
https://doi.org/10.1016/j.pecs.2010.02.001
18. Gao, H., Runstedtler, A., Majeski, A., Yandon, R., Zanganeh, K., -Shafeen, A. Reducing the recycle flue gas rate of an oxy-fuel utility -power boiler. Fuel, 2015, 140, 578‒589.
https://doi.org/10.1016/j.fuel.2014.09.065
19. Al-Makhadmeh, L., Maier, J., Al-Harahsheh, M., Scheffknecht, G. Oxy--fuel technology: An experimental investigation into oil shale combustion under oxy-fuel conditions. Fuel, 2013, 103, 421‒429.
https://doi.org/10.1016/j.fuel.2012.05.054
20. Konist, A., Loo, L., Valtsev, A., Maaten, B., Siirde, A., Neshumayev, D., Pihu, T. Calculation of the amount of Estonian oil shale products from combustion in regular and oxy-fuel mode in a CFB boiler. Oil Shale, 2014, 31(3), 211‒224.
https://doi.org/10.3176/oil.2014.3.02
21. Normann, F., Andersson, K., Leckner, B., Johnsson, F. Emission control of nitrogen oxides in the oxy-fuel process. Prog. Energ. Combust., 2009, 35(5), 385‒397.
https://doi.org/10.1016/j.pecs.2009.04.002
22. McCauley, K. J., Farzan, H., Alexander, K. C., McDonald, D. K., -Varagani, R., Prabhakar, R., Tranier, J.-P., Perrin, N. Commercialization of oxy-coal combustion: Applying results of a large 30MWth pilot -project. Energy Procedia, 2009, 1(1), 439‒446.
https://doi.org/10.1016/j.egypro.2009.01.059
23. Rathnam, R. K., Elliott, L. K., Wall, T. F., Liu, Y. H., Moghtaderi, B. Differ-ences in reactivity of pulverised coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Process. Technol., 2009, 90(6), 797‒802.
https://doi.org/10.1016/j.fuproc.2009.02.009
24. Meriste, T., Yörük, C. R., Trikkel, A., Kaljuvee, T., Kuusik, R. TG-FTIR analysis of oxidation kinetics of some solid fuels under oxy-fuel conditions. J. Therm. Anal. Calorim., 2013, 114(2), 483‒489.
https://doi.org/10.1007/s10973-013-3063-x
25. Vorres, K. S. The Argonne premium coal sample program. Energ. Fuel., 1990, 4(5), 420‒426.
https://doi.org/10.1021/ef00023a001
26. Cook, E. W. Oil-shale technology in USA. Fuel, 1974, 53(3), 146‒151.
https://doi.org/10.1016/0016-2361(74)90001-5
27. Külaots, I., Goldfarb, J. L., Suuberg, E. M. Characterization of Chinese, American and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89(11), 3300‒3306.
https://doi.org/10.1016/j.fuel.2010.05.025
28. Williams, P. T., Ahmad, N. Influence of process conditions on the pyro-l-ysis of Pakistani oil shales. Fuel, 1999, 78(6), 653‒662.
https://doi.org/10.1016/S0016-2361(98)00190-2
29. Charpenay, S., Serio, M. A., Solomon, P. R. The prediction of coal char reactivity under combustion conditions. Twenty-Fourth Symposium (Inter-national) on Combustion, 1992, 24(1), 1189–1197.
https://doi.org/10.1016/S0082-0784(06)80140-2
30. Goldfarb, J. L., D’Amico, A., Culin, C., Suuberg, E. M., Külaots, I. -Oxidation kinetics of oil shale semicokes: Reactivity as a function of pyro-lysis temperature and shale origin. Energ. Fuel., 2013, 27(2), 666‒672.
https://doi.org/10.1021/ef3015052
31. Zanoni, M. A. B., Massard, H., Martins, M. F. Formulating and optimizing a combustion pathways for oil shale and its semi-coke. Combust. Flame, 2012, 159(10), 3224‒3234.
https://doi.org/10.1016/j.combustflame.2012.05.005
32. Burnham, A. K., Braun, R. L. Global kinetic analysis of complex materials. Energ. Fuel., 1999, 13(1), 1‒22.
33. Trikkel, A., Kuusik, R., Martins, A., Pihu, T., Stencel, J. M. Utilization of Estonian oil shale semicoke. Fuel Process. Technol., 2008, 89(8), 756‒763.
https://doi.org/10.1016/j.fuproc.2008.01.010
34. Senneca, O., Russo, P., Salatino, P., Masi, S. The relevance of thermal annealing to the evolution of coal char gasification reactivity. Carbon, 1997, 35(1), 141‒151.
https://doi.org/10.1016/S0008-6223(96)00134-0
35. Külaots, I., Aarna, I., Callejo, M., Hurt, R. H., Suuberg, E. M. Development of porosity during coal char combustion. P. Combust. Inst., 2002, 29(1), 495‒501.
https://doi.org/10.1016/S1540-7489(02)80064-5
36. Zhang, X. J., de Jong, W., Preto, F. Estimating kinetic parameters in TGA using B-spline smoothing and the Friedman method. Biomass Bioenerg., 2009, 33(10), 1435‒1441.
https://doi.org/10.1016/j.biombioe.2009.06.009