To determine the characteristics of the palaeoenvironment that affected organic richness, the Neogene organic-rich sediments in the Upper layer of the Aleksinac deposit (Dubrava block, Serbia) were examined. The studied samples are presumed to be of andesitic to felsic origin, with evidence of volcanic activity. Sediment generation was influenced by hydro-thermal fluids, which promoted the productivity of aquatic organisms and led to organic enrichment. Clastic input brought trace and rare earth elements into the basin. Palaeoenvironmental indicators derived from concentrations of major, trace, and rare earth elements show good accordance with organic geochemical data obtained in previous detailed studies, indicating deposition of the sediments in an anoxic lacustrine environment of variable salinity under warm, arid, and semiarid/semihumid climatic conditions. Such settings favoured primary bioproductivity in the lake, whereas a stable, stratified water column with highly reducing bottom water enhanced organic matter preservation. The lowering of total organic carbon content was mainly controlled by more humid episodes that promoted clastic influx and decreased organic matter concentration, rather than by changes in anoxic redox conditions.
1. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. 2nd ed. Springer-Verlag, Heidelberg, 1984.
https://doi.org/10.1007/978-3-642-87813-8
2. Han, Y. W, Ma, Z. D., Zhang, H. F., Zhang, B. R., Li, F. L., Gao, S. et al. Geochemistry. Geological Publishing House, Beijing, 2003.
3. Aliyev, S. A., Sari, A. Organic material and trace elements of bituminous rocks in the Ozanköy Field, Ankara, Turkey. Acta Geologica Sinica (English Edition), 2007, 81(4), 658–667.
https://doi.org/10.1111/j.1755–6724.2007.tb00989.x
4. Balaram, V. Rare earth elements: a review of applications, occurrence, explo-ration, analysis, recycling, and environmental impact. Geoscience Frontiers, 2019, 10(4), 1285–1303.
https://doi.org/10.1016/j.gsf.2018.12.005
5. Pedersen, T. F., Calvert, S. E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bulletin, 1990, 74(4), 454–466.
https://doi.org/10.1306/0C9B232B-1710-11D7-8645000102C1865D
6. Jia, J., Bechtel, A., Liu, Z., Strobl, S. A. I., Sun, P., Sachsenhofer, R. F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): implications from organic and inorganic geochemical analyses. International Journal of Coal Geology, 2013, 113, 11–26.
https://doi.org/10.1016/j.coal.2013.03.004
7. Song, Y., Liu, Z., Meng, Q., Xu, J., Sun, P., Cheng, L. et al. Multiple controlling factors of the enrichment of organic matter in the Upper Cretaceous oil shale sequences of the Songliao Basin, NE China: implications from geochemical analyses. Oil Shale, 2016, 33(2), 142–166.
https://doi.org/10.3176/oil.2016.2.04
8. Xu, S.-C., Hu, H.-B., Zhang, P., Wang, Q.-C., Kang, J., Miao, Q. Major and trace elements in mid-Eocene lacustrine oil shales of the Fushun Basin, NE China: concentration features and paleolimnological implications. Marine and Petroleum Geology, 2020, 121, 104610.
https://doi.org/10.1016/j.marpetgeo.2020.104610
9. Li, T.-J., Huang, Z.-L., Chen, X., Li, X.-N., Liu, J.-T. Paleoenvironment and organic matter enrichment of the Carboniferous volcanic-related source rocks in the Malang Sag, Santanghu Basin, NW China. Petroleum Science, 2021, 18, 29–53.
https://doi.org/10.1007/s12182-020-00514-1
10. Wu, Z., Zhao, X., Li, J., Pu, X., Tao, X., Shi, Z. et al. Paleoenvironmental modes and organic matter enrichment mechanisms of lacustrine shale in the Paleogene Shahejie Formation, Qikou Sag, Bohai Bay Basin. Energy Reports, 2021, 7, 9046–9068.
https://doi.org/10.1016/j.egyr.2021.11.228
11. Mallick, M., Banerjee, B., Hassan, T., Kumar, T. V., Babu, E. V. S. S. K., Krishna, K. et al. Geochemistry of Permian carbonaceous shales from Raniganj sub-basin, Damodar Valley, India: implications for provenance, weathering, tectonics and source of organic matter. Applied Geochemistry, 2022, 146, 105469.
https://doi.org/10.1016/j.apgeochem.2022.105469
12. Armstrong-Altrin, J. S., Ramos-Vázquez, M. A., Madhavaraju, J., Marca-Castillo, M. E., Machain-Castillo, M. L, Márquez-García, A. Z. Geochemistry of marine sediments adjacent to the Los Tuxtlas volcanic complex, Gulf of Mexico: constraints on weathering and provenance. Applied Geochemistry, 2022, 141, 105321.
https://doi.org/10.1016/j.apgeochem.2022.105321
13. Ercegovac, M., Grgurović, D., Bajc, S., Vitorović, D. Oil shale in Serbia: geological and chemical-technological investigations, actual problems of exploration and feasibility studies. In Mineral Material Complex of Serbia and Montenegro at the Crossings of Two Millenniums (Vujić, S., ed.). Margo-Art, Belgrade, 2003, 368–378.
14. Jelenković, R., Kostić, A., Životić, D., Ercegovac, M. Mineral resources of Serbia. Geologica Carpathica, 2008, 59(4), 345–361.
15. Gajica, G., Šajnović, A., Stojanović, K., Antonijević, M., Aleksić, N., Jovančićević, B. The influence of pyrolysis type on shale oil generation and its composition (Upper layer of Aleksinac oil shale, Serbia). Journal of the Serbian Chemical Society, 2017, 82(12), 1461–1477.
https://doi.org/10.2298/JSC170421064G
16. Gajica, G., Šajnović, A., Stojanović, K., Kostić, A., Slipper, I., Antonijević, M. et al. Organic geochemical study of the upper layer of Aleksinac oil shale in the Dubrava block, Serbia. Oil Shale, 2017, 34(3), 197–218.
https://doi.org/10.3176/oil.2017.3.01
17. Gajica, G., Šajnović, A., Stojanović, K., Schwarzbauer, J., Kostić, A., Jovančićević, B. A comparative study of the molecular and isotopic composition of biomarkers in immature oil shale (Aleksinac deposit, Serbia) and its liquid pyrolysis products (open and closed systems). Marine and Petroleum Geology, 2022, 136, 105383.
https://doi.org/10.1016/j.marpetgeo.2021.105383
18. McLennan, S. M., Hemming, S., McDaniel, D. K., Hanson, G. N. Geochemical approaches to sedimentation, provenance, and tectonics. In Processes Controlling the Composition of Clastic Sediments (Johnsson, M. J., Basu, A., eds). Geological Society of America, 1993, 21–40.
https://doi.org/10.1130/SPE284-p21
19. Taylor, S. R., McLennan, S. M. The geochemical evolution of the continental crust. Reviews of Geophysics, 1995, 33(2), 241–265.
https://doi.org/10.1029/95RG00262
20. Hayashi, K.-I., Fujisawa, H., Holland, H. D., Ohmoto, H. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 1997, 61(19), 4115–4137.
https://doi.org/10.1016/S0016-7037(97)00214-7
21. Basu, A. Evolution of siliciclastic provenance inquiries: a critical appraisal. In Sediment Provenance: Influences on Compositional Change from Source to Link (Mazumder, R., ed.). Elsevier, Amsterdam, 2017, 5–23.
https://doi.org/10.1016/B978-0-12-803386-9.00002-2
22. Fu, X., Wang, J., Feng, X., Chen, W., Wang, D., Song, C. et al. Mineralogical composition of and trace-element accumulation in lower Toarcian anoxic sediments: a case study from the Bilong Co. oil shale, eastern Tethys. Geological Magazine, 2016a, 153(4), 618–634.
https://doi.org/10.1017/S0016756815000758
23. Vosoughi Moradi, A., Sarı, A., Akkaya, P. Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: implications for paleoclimate conditions, source–area weathering, provenance and tectonic setting. Sedimentary Geology, 2016, 341, 289–303.
https://doi.org/10.1016/j.sedgeo.2016.05.002
24. Li, Q., Wu, S., Xia, D., You, X., Zhang, H., Lu, H. Major and trace element geochemistry of the lacustrine organic-rich shales from the Upper Triassic Chang 7 Member in the southwestern Ordos Basin, China: implications for paleoenvironment and organic matter accumulation. Marine and Petroleum Geology, 2020, 111, 852–867.
https://doi.org/10.1016/j.marpetgeo.2019.09.003
25. Boynton, W. V. Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (Henderson, P., ed.). Elsevier, Amsterdam, 1984, 63–114.
26. Taylor, S. R., McLennan, S. M. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, 1985.
https://doi.org/10.1016/B978-0-444-42148-7.50008-3
27. McLennan, S. M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2001, 2(4), 2000GC00010.
https://doi.org/10.1029/2000GC000109
28. Han, S., Zhang, Y., Huang, J., Rui, Y., Tang, Z. Elemental geochemical characterization of sedimentary conditions and organic matter enrichment for Lower Cambrian shale formations in northern Guizhou, South China. Minerals, 2020, 10(9), 793.
https://doi.org/10.3390/min10090793
29. Godoy, L. H., de Souza Sardinha, D. S., Torres Moreno, M. M. Major and trace elements redistribution in weathered claystones from the Corumbataí Formation, Paraná Sedimentary Basin, São Paulo, Brazil. Brazilian Journal of Geology, 2017, 47(4), 615–632.
https://doi.org/10.1590/2317-4889201720170086
30. Kašanin-Grubin, M. Sedimentology of the Oil Shales Series of the Aleksinac Basin. M.S. thesis. University of Belgrade, Serbia, 1996.
31. Obradović, J., Vasić, N. Jezerski baseni u neogenu Srbije. Srpska akademija nauka i umetnosti, Beograd, 2007.
32. Hay, R. L., Sheppard, R. A. Occurrence of zeolites in sedimentary rocks: an overview. Reviews in Mineralogy and Geochemistry, 2001, 45(1), 217–234.
https://doi.org/10.2138/rmg.2001.45.6
33. Wang, Q., Bai, J., Ge, J., Wei, Y., Li, S. Geochemistry of rare earth and other trace elements in Chinese oil shale. Oil Shale, 2014, 31(3), 266–277.
https://doi.org/10.3176/oil.2014.3.06
34. Bai, Y., Lv, Q., Liu, Z., Sun, P., Xu, Y., Meng, J. et al. Major, trace and rare earth element geochemistry of coal and oil shale in the Yuqia area, Middle Jurassic Shimengou Formation, northern Qaidam Basin. Oil Shale, 2020, 37(1), 1–31.
https://doi.org/10.3176/oil.2020.1.01
35. Cullers, R. L., Graf, J. L. Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks – ore petrogenesis. In Rare Earth Element Geochemistry (Henderson, P., ed.). Elsevier, Amsterdam, 1984, 275–312.
https://doi.org/10.1016/B978-0-444-42148-7.50013-7
36. Xu, J.-B., Cheng, B., Deng, Q., Liang, Y.-G., Faboya, O. L., Liao, Z.-W. Distribution and geochemical significance of trace elements in shale rocks and their residual kerogens. Acta Geochimica, 2018, 37, 886–900.
https://doi.org/10.1007/s11631-018-0297-0
37. Bai, Y., Liu, Z., Sun, P., Liu, R., Hu, X., Zhao, H. et al. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China. Journal of Asian Earth Sciences, 2015, 97, 89–101.
https://doi.org/10.1016/j.jseaes.2014.10.008
38. Bhatia, M. R. Composition and classification of Paleozoic flysch mudrocks of eastern Australia: implications in provenance and tectonic setting interpretation. Sedimentary Geology, 1985, 41(2–4), 249–268.
https://doi.org/10.1016/0037-0738(84)90065-4
39. Bhatia, M. R., Crook, K. A. W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 1986, 92, 181–193.
https://doi.org/10.1007/BF00375292
40. Roser, B. P., Korsch, R. J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 1986, 94(5), 635–650.
https://doi.org/10.1086/629071
41. Liu, B., Song, Y., Zhu, K., Su, P., Ye, X., Zhao, W. Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin: implications for paleoenvironment, provenance, tectonic setting and shale oil potential. Marine and Petroleum Geology, 2020, 120, 104569.
https://doi.org/10.1016/j.marpetgeo.2020.104569
42. Grizelj, A., Peh, Z., Tibljaš, D., Kovačić, M., Kurečić, T. Mineralogical and geochemical characteristics of Miocene pelitic sedimentary rocks from the south-western part of the Pannonian Basin System (Croatia): implications for provenance studies. Geoscience Frontiers, 2017, 8(1), 65–80.
https://doi.org/10.1016/j.gsf.2015.11.009
43. Marović, M., Djoković, I., Pešić, L., Radovanović, S., Toljić, M., Gerzina, N. Neotectonics and seismicity of the southern margin of the Pannonian basin in Serbia. EGU Stephan Mueller Special Publication Series, 2002, 3, 277–295.
https://smsps.copernicus.org/articles/3/277/2002/
https://doi.org/10.5194/smsps-3-277-2002
44. Dimitrijević, M. D. Geologija Jugoslavije (Geology of Yugoslavia). Geological Institute–GEMINI, Belgrade, 1997.
45. Zhang, W. Z., Yang, H., Li, J. F., Ma, J. Leading effect of high-class source rock of Chang 7 in Ordos Basin on enrichment of low permeability oil-gas accumulation – hydrocarbon generation and expulsion mechanism. Petroleum Exploration and Development, 2006, 33(3), 289–293.
46. Westall, F., Campbell, K. A., Bréhéret, J. G., Foucher, F., Gautret, P., Hubert, A.et al. Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context. Geology, 2015, 43(7), 615–618.
https://doi.org/10.1130/G36646.1
47. Cronan, D. S. Underwater Minerals. Academic Press, London, 1980.
48. Pelleter, E., Fouquet, Y., Etoubleau, J., Cheron, S., Labanieh, S., Josso, P. et al. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific). Ore Geology Reviews, 2017, 87, 126–146.
https://doi.org/10.1016/j.oregeorev.2016.09.014
49. Liu, H., Wang, C., Li, Y., Deng, J., Deng, B., Feng, Y. et al. Geochemistry of the black rock series of lower Cambrian Qiongzhusi Formation, SW Yangtze Block, China: reconstruction of sedimentary and tectonic environments. Open Geosciences, 2021, 13(1), 166–187.
https://doi.org/10.1515/geo-2020-0228
50. Toth, J. R. Deposition of submarine crusts rich in manganese and iron. GSA Bulletin, 1980, 91(1), 44–54.
https://doi.org/10.1130/0016-7606(1980)91<44:DOSCRI>2.0.CO;2
51. Wang, Z., Li, W., Wang, J., Wei, H., Fu, X., Song, C. et al. Controls on organic matter accumulation in marine mudstones from the Lower Permian Zhanjin Formation of the Qiangtang Basin (Tibet), eastern Tethys. Marine and Petroleum Geology, 2022, 138, 105556.
https://doi.org/10.1016/j.marpetgeo.2022.105556
52. Alderton, D. Zeolites. In Encyclopedia of Geology, 2nd ed. (Alderton, D., Elias, S. A., eds). Academic Press, London, 2021, 313–325.
https://doi.org/10.1016/B978-0-08-102908-4.00041-2
53. Dekov, V. M., Darakchieva, V. Y., Billström, K., Garbe-Schönberg, C. D., Kamenov, G. D., Gallinari, M. et al. Element enrichment and provenance of the detrital component in Holocene sediments from the western Black Sea. Oceanologia, 2020, 62(2), 139–163.
https://doi.org/10.1016/j.oceano.2019.10.001
54. Dymond, J., Suess, E., Lyle, M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography and Paleoclimatology, 1992, 7(2), 163–181.
https://doi.org/10.1029/92PA00181
55. Ferriday, T., Montenari, M. Chemostratigraphy and chemofacies of source rock analogues: a high-resolution analysis of black shale successions from the lower Silurian Formigoso Formation (Cantabrian Mountains, NW Spain). In Stratigraphy & Timescales (Montenari, M., ed.). Elsevier Science, Amsterdam, 2016, 123–255.
https://doi.org/10.1016/bs.sats.2016.10.004
56. Tribovillard, N., Algeo, T. J., Lyons, T. W., Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 2006, 232(1–2), 12–32.
https://doi.org/10.1016/j.chemgeo.2006.02.012
57. Goldberg, K., Humayun, M. 2016. Geochemical palaeoredox indicators in organic-rich shales of the Irati Formation, Permian of the Paraná Basin, southern Brazil. Brazilian Journal of Geology, 2016, 46(3), 377–393.
https://doi.org/10.1590/2317-4889201620160001
58. Algeo, T. J., Maynard, J. B. Trace-element behaviour and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 2004, 206(3–4), 289–318.
https://doi.org/10.1016/j.chemgeo.2003.12.009
59. Murphy, A. E., Sageman, B. B., Hollander, D. J., Lyons, T. W., Brett, C. E. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography and Paleoclimatology, 2000, 15(3), 280–291.
https://doi.org/10.1029/1999PA000445
60. Zhao, J., Jin, Z., Jin, Z., Geng, Y., Wen, X., Yan, C. Applying sedimentary geo-chemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China. International Journal of Coal Geology, 2016, 163, 52–71.
https://doi.org/10.1016/j.coal.2016.06.015
61. Yamamoto, K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 1987, 52(1–2), 65–108.
https://doi.org/10.1016/0037-0738(87)90017-0
62. Rimmer, S. M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology, 2004, 206(3–4), 373–391.
https://doi.org/10.1016/j.chemgeo.2003.12.029
63. Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2–4), 344–361.
https://doi.org/10.1016/j.palaeo.2005.05.011
64. Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J. S., Moutte, J. Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern India: implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geológicas, 2007, 24(2), 150–160.
65. Ross, D. J. K., Bustin, R. M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin. Chemical Geology, 2009, 260(1–2), 1–19.
https://doi.org/10.1016/j.chemgeo.2008.10.027
66. Sajid, Z., Ismail, M. S., Zakariah, M. N. A., Tsegab, H., Gámez Vintaned, J. A., Hanif, T. et al. Impact of paleosalinity, paleoredox, paleoproductivity/preservation on the organic matter enrichment in black shales from Triassic turbidites of Semanggol Basin, Peninsular Malaysia. Minerals, 2020, 10(10), 915.
https://doi.org/10.3390/min10100915
67. Kidder, D. L., Erwin, D. H. Secular distribution of biogenic silica through the Phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. The Journal of Geology, 2001, 109(4), 509–522.
https://doi.org/10.1086/320794
68. Magnall, J. M., Gleeson, S. A., Paradis, S. The importance of siliceous radiolarian-bearing mudstones in the formation of sediment-hosted Zn-Pb ± Ba mineralization in the Selwyn Basin, Yukon, Canada. Economic Geology, 2015, 110(8), 2139–2146.
https://doi.org/10.2113/econgeo.110.8.2139
69. Liang, Y., Zhang, J., Liu, Y., Tang, X., Li, Z., Ding, J. et al. Evidence for bio-genic silica occurrence in the Lower Silurian Longmaxi Shale in southeastern Chongqing, China. Minerals, 2020, 10(11), 945.
https://doi.org/10.3390/min10110945
70. Qin, J., Tao, G., Teng, G. Hydrocarbon-forming organisms in excellent marine source rocks in South China. Petroleum Geology & Experiment, 2010, 32(3), 262–269.
https://doi.org/10.11781/sysydz201003262
71. Wu, C., Tuo, J., Zhang, M., Liu, Y., Xing, L., Gong, J., Qiu, J. Multiple controlling factors of lower Palaeozoic organic-rich marine shales in the Sichuan Basin, China: evidence from minerals and trace elements. Energy Exploration & Exploitation, 2017, 35(5), 627–644.
https://doi.org/10.1177/0144598717709667
72. Zhang, M., Liu, Z., Xu, S., Sun, P., Hu, X. Element response to the ancient lake information and its evolution history of argillaceous source rocks in the Lucaogou Formation in Sangonghe area of southern margin of Junggar Basin. Journal of Earth Science, 2013, 24, 987–996.
https://doi.org/10.1007/s12583-013-0392-4
73. Ma, L., Zhang, Z., Meng, W. Climate-provenance effect on the organic matter enrichment of the Chang 9 source rocks in the Central Ordos Basin, China. Geofluids, 2021, 2021(1), 1233879.
https://doi.org/10.1155/2021/1233879
74. Zhao, Z. Y., Zhao, J. H., Wang, H. J., Liao, J. D., Liu, C. M. Distribution characteristics and applications of trace elements in Junggar Basin. Natural Gas Exploration and Development, 2007, 30, 30–33.
75. Wang, J.-X., Sun, P.-C., Liu, Z.-J., Li, Y.-J. Characteristics and genesis of lacustrine laminar coal and oil shale: a case study in the Dachanggou Basin, Xinjiang, Northwest China. Marine and Petroleum Geology, 2021, 126, 104924.
https://doi.org/10.1016/j.marpetgeo.2021.104924
76. Jin, Z. D., Zhang, E. L. Paleoclimate implications of Rb/Sr ratios from lake sediments. Science and Technology Engineering, 2002, 2(3), 20–22.
77. Zuo, X., Li, C., Zhang, J., Ma, G., Chen, P. Geochemical characteristics and depositional environment of the Shahejie Formation in the Binnan Oilfield, China. Journal of Geophysics and Engineering, 2020, 17(3), 539–551.
https://doi.org/10.1093/jge/gxaa013
78. Lerman, A. Lakes: Chemistry, Geology, Physics. Springer, New York, 1978.
https://doi.org/10.1007/978-1-4757-1152-3
79. Armstrong-Altrin, J., Lee, Y. I., Kasper-Zubillaga, J. J., Trejo-Ramírez, E. Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting. Geological Journal, 2017, 52(4), 559–582.
https://doi.org/10.1002/gj.2792
80. Tenger, B., Liu, W., Xu, Y., Gao, C., Hu, K., Gao, C. Comprehensive geo-chemical identification of highly evolved marine hydrocarbon source rocks: organic matter, paleoenvironment and development of effective hydrocarbon source rocks. Chinese Journal of Geochemistry, 2006, 25, 333–340.
https://doi.org/10.1007/s11631-006-0332-4
81. Wei, Y., Li, X., Zhang, R., Li, X., Lu, S., Qiu, Y. et al. Influence of a paleo-sedimentary environment on shale oil enrichment: a case study on the Shahejie Formation of Raoyang Sag, Bohai Bay Basin, China. Frontiers of Earth Science, 2021, 9, 736054.
https://doi.org/10.3389/feart.2021.736054
82. Liu, Y. J., Cao, L. M., Li, Z. L., Wang, H. N., Chu, T. Q., Zhang, J. R. Element Geochemistry. Science Press, Beijing, 1984.
83. Torres, M. E., Brumsack, H. J., Bohrmann, G., Emeis, K. C. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chemical Geology, 1996, 127(1–3), 125–139.
https://doi.org/10.1016/0009-2541(95)00090-9
84. Reimann, C., Caritat, P. Chemical Elements in the Environment. Springer, Berlin, 1998.
https://doi.org/10.1007/978-3-642-72016-1
85. Xu, B., Ding, S., Wang, Y., Liu, Q. F. Geochemical characteristics of illite clay rocks from the Shihezi Formation in the Hanxing mining area and its sedimentary environment. Mining Science and Technology (China), 2011, 21(4), 495–500.
https://doi.org/10.1016/j.mstc.2011.06.006
86. Deng, H. W., Qian, K. Sedimentary Geochemistry and Environment Analysis. Gansu Technology Publishing House, Lanzhou, 1993.
87. Sun, Z. C., Yang, P., Zhang, Z. H. Sedimentary Environment and Hydrocarbon Generation of China Cenozoic Salty Lacustrine Facies. Petroleum Industry Press, Beijing, 1997.
88. Lan, X. H., Ma, D. X., Xu, M. G., Zhou, Q. W., Zhang, G. W. Some geochemical signs and their importance for sedimentary facies. Marine Geology & Quaternary Geology, 1987, 7(1), 39–49.
89. Zheng, R. C., Liu, M. Q. Study on paleosalinity of Chang-6 oil reservoir set in Ordos Basin. Oil and Gas Geology, 1999, 20(1), 20–25.
90. Meng, Q. T., Liu, Z. J., Bruch, A. A., Liu, R., Hu, F. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. Journal of Asian Earth Sciences, 2012, 45, 95–105.
https://doi.org/10.1016/j.jseaes.2011.09.021
91. Hunt, J. M. Petroleum Geochemistry and Geology. W. H. Freeman and Company, San Francisco, 1979.
92. Holland, H. D. The Chemistry of the Atmosphere and the Oceans. Wiley-Interscience, New York, 1978.
93. Morford, J. L., Russell, A. D., Emerson, S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanlich Inlet, BC. Marine Geology, 2001, 174(1–4), 355–369.
https://doi.org/10.1016/S0025-3227(00)00160-2
94. Li, Y., Wang, Z., Gan, Q., Niu, X., Xu, W. Paleoenvironmental conditions and organic matter accumulation in Upper Palaeozoic organic-rich rocks in the east margin of the Ordos Basin, China. Fuel, 2019, 252, 172–187.
https://doi.org/10.1016/j.fuel.2019.04.095
95. Hetzel, A., März, C., Vogt, C., Brumsack, H.-J. Geochemical environment of Cenomanian–Turonian black shale deposition at Wunstorf (northern Germany). Cretaceous Research, 2011, 32(4), 480–494.
https://doi.org/10.1016/j.cretres.2011.03.004
96. Jones, B., Manning, D. A. C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geo-logy, 1994, 111(1–4), 111–129.
https://doi.org/10.1016/0009-2541(94)90085-X
97. Wang, Z., Fu, X., Feng, X., Song, C., Wang, D., Chen, W. et al. Geochemical features of the black shales from the Wuyu Basin, southern Tibet: implications for palaeoenvironment and palaeoclimate. Geological Journal, 2017, 52(2), 282–297.
https://doi.org/10.1002/gj.2756
98. Sun, Y.-Z., Jinxi, W., Shifeng, L., Kankun, J., Mingyue, L. Mechanism of uranium accumulation in the Kupferschiefer from Poland and Germany. Energy Exploration & Exploitation, 2005, 23(6), 463–473.
https://doi.org/10.1260/014459805776986902
99. Chen, R., Sharma, S., Bank, T., Soeder, D., Eastman, H. Comparison of iso-topic and geochemical characteristics of sediments from a gas- and liquids-prone wells in Marcellus Shale from Appalachian Basin, West Virginia. Applied Geochemistry, 2015, 60, 59–71.
https://doi.org/10.1016/j.apgeochem.2015.01.001
100. Khan, M. Z., Feng, Q., Zhang, K., Guo, W. Biogenic silica and organic carbon fluxes provide evidence of enhanced marine productivity in the Upper Ordovician-Lower Silurian of South China. Palaeogeography, Palaeoclimatology, Palaeo-ecology, 2019, 534, 109278.
https://doi.org/10.1016/j.palaeo.2019.109278
101. Li, Y., Wang, N., Li, Z., Zhou, X., Zhang, C., Wang, Y. Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China. Frontiers of Earth Science, 2013, 7, 487–500.
https://doi.org/10.1007/s11707-013-0392-9
102. Glikson, M., Chappell, B. W., Freeman, R. S., Webber, E. Trace elements in oil shales, their source and organic association with particular reference to Australian deposits. Chemical Geology, 1985, 53(1–2), 155–174.
https://doi.org/10.1016/0009-2541(85)90028-2
103. Fu, X., Wang, J., Zeng, Y., Tan, F., Feng, X. Concentration and mode of occurrence of trace elements in marine oil shale from the Bilong Co area, northern Tibet, China. International Journal of Coal Geology, 2011, 85(1), 112–122.
https://doi.org/10.1016/j.coal.2010.10.004
104. Chowdhury, A. N., Handa, B. K., Das, A. K. High lithium, rubidium and cesium contents of thermal spring water, spring sediments and borax deposits in Puga valley, Kashmir, India. Geochemical Journal, 1974, 8(2), 61–65.
https://doi.org/10.2343/geochemj.8.61
105. Fleet, A. J., Kelts, K., Talbot, M. R. Lacustrine Petroleum Source Rocks. Geological Society of London, Special Publications No. 40, London, 1988.
106. Katz, B. J. Factors controlling the development of lacustrine petroleum source rocks – an update. In Paleogeography, Paleoclimate, and Source Rocks (Huc, A.-Y., ed.). American Association of Petroleum Geologists, Studies in Geology 40, 1995, 61–79.
107. Rosen, B. H., Loftin, K. A., Graham, J. L., Stahlhut, K. N., Riley, J. M., Johnston, B. D. et al. Understanding the Effect of Salinity Tolerance on Cyano-bacteria Associated With a Harmful Algal Bloom in Lake Okeechobee, Florida. U.S. Geological Survey Scientific Investigations Report, 2018, 2018–5092, 32.
https://doi.org/10.3133/sir20185092
108. Schwarzbauer, J., Jovančićević, B. Fossil Matter in the Geosphere. Springer, Heidelberg, 2015.
https://doi.org/10.1007/978-3-319-11938-0