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Abstract. To determine the characteristics of the palaeoenvironment that
affected organic richness, the Neogene organic-rich sediments in the Upper
layer of the Aleksinac deposit (Dubrava block, Serbia) were examined.
The studied samples are presumed to be of andesitic to felsic origin, with
evidence of volcanic activity. Sediment generation was influenced by hydro-
thermal fluids, which promoted the productivity of aquatic organisms and led
to organic enrichment. Clastic input brought trace and rare earth elements
into the basin. Palaeoenvironmental indicators derived from concentrations
of major, trace, and rare earth elements show good accordance with organic
geochemical data obtained in previous detailed studies, indicating deposition
of the sediments in an anoxic lacustrine environment of variable salinity under
warm, arid, and semiarid/semihumid climatic conditions. Such settings favoured
primary bioproductivity in the lake, whereas a stable, stratified water column
with highly reducing bottom water enhanced organic matter preservation.
The lowering of total organic carbon content was mainly controlled by more
humid episodes that promoted clastic influx and decreased organic matter
concentration, rather than by changes in anoxic redox conditions.
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1. Introduction

Oil shale is mostly composed of inorganic matter, with organic matter (OM)
dispersed within it, forming a homogeneous mixture. It is often characterised by
fine lamination that alternates between laminae of mixed organic and mineral
materials and pure mineral material. Although OM is present in a seemingly
small percentage, it is very important, since it mainly contains kerogen types |
and I, which have great potential to produce liquid hydrocarbons under suitable
geological conditions or through thermal processing [1]. Low concentrations
of trace and rare earth elements (TEs and REEs, respectively) can be found
in oil shale. These elements do not exist independently and may be present
as organometallic compounds, embedded in mineral crystal structures, or in
a dispersed state on clay and oxyhydroxide particles [2]. Their distributions
are mainly influenced by the geochemical cycle of elements and controlled by
the physical and chemical characteristics of their atoms or ions, as well as by
biotic and abiotic factors in the depositional environment [3, 4].

The analysis of the inorganic matter in oil shale can be used to reconstruct
the geological history of the study area based on the content and distribution
of elements, as well as corresponding geochemical parameters. This, in
turn, allows us to determine the source material and palacoconditions in the
depositional environment that contributed to OM supply, its preservation,
and the formation of organic-rich sediments, such as oil shales [1]. The main
factors that control OM enrichment are palaeobioproductivity, conditions in
the palaeoenvironment (climate, salinity, and redox potential), and the influx
of clastic material [5—12].

Although the Aleksinac oil shale deposit is the largest and richest oil shale
deposit in Serbia and of economic significance [13, 14], there are only a few
studies on its inorganic composition. Therefore, the aims of this study were:
(i) to establish comprehensive characteristics of the palacoenvironment that
affected the organic richness of the sediments based on inorganic proxies, and
(i1) to examine the compatibility between inorganic and organic geochemical
parameters. The results of this study may serve as a valuable archive of
palaeoenvironmental information on the area and can be transposed to other
geological scenarios.

2. Samples and analytical methods

2.1. Samples

Outcrop samples from the Upper layer of the Dubrava block of the Aleksinac
deposit were selected for this study. In previous publications, a detailed
description of the lithostratigraphic column of the analysed samples has been
provided [15, 16], as well as in Part A of this study (see this issue).
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2.2. Previous results

The origin, depositional environment, maturity and hydrocarbon generation
potential of the organic matter, derived from the comprehensive OM
characterisation of the analysed samples, are detailed in prior studies [15-17].
To have a better understanding of the depositional environment, these results
are utilised to correlate with inorganic geochemical parameters but are not
presented in this work. In this section, the main findings obtained previously
are summarised, as they will be used to correlate with inorganic parameters.

The OM is uniformly immature, with total organic carbon (TOC) content
varying between 1.31 and 29.10 wt% (corresponding to vitrinite reflectance of
0.36—0.44% and a production index 0f 0.01-0.02). Sample D16 has the highest
OM content, whereas samples D4, D6, and D7 have the lowest. According
to Rock-Eval data, the OM mainly consists of a mixture of kerogen types I
and II. The samples that stand out are sample D13, which contains exclusively
kerogen type I, and samples D4, D6, and D7, which contain kerogen type 11
with a certain input of kerogen type I11.

The biomarker patterns are in accordance with the Rock-Eval data,
revealing a significant presence of aquatic organisms, including green and
brown algae, as well as bacteria, with a moderate influence from higher-plant
organic matter [16, 17]. Based on the thermal decomposition of kerogen, all
samples show a high potential for oil generation. Only samples D4, D6, and
D7 have a slightly lower potential, which agrees with the type of kerogen in
these samples [15-17].

The OM was deposited in a reducing lacustrine environment characterised
by alkaline, brackish to freshwater conditions and water-column stratification,
most likely as a result of variations in water depth, salinity, and temperature
during the formation of the analysed sediments [16]. According to biomarker
patterns in the samples under investigation, sample D16 differs most from the
others [16, 17]. A shallow water column may have contributed to the relative
abundance of C,, hopane in sample D16, whereas a steranes/hopanes ratio <1
suggests a higher presence of prokaryotic OM than algal.

2.3. Analytical methods

For the determination of major elements, inductively coupled plasma optical
emission spectroscopy (ICP-OES, Thermo iCAP 6500) was used, whereas
for TEs and REEs, inductively coupled plasma mass spectrometry (ICP-MS,
Thermo X Series II ICP-MS) was applied. The mineral composition was
analysed using an XRD analyser (Bruker D8 Advance diffractometer). A Rock-
Eval 6 Standard analyser was employed for the determination of TOC, and
an elemental analyser (Vario EL I1I, CHNOS Elemental Analyser, Elementar
Analysensysteme GmbH) for total sulphur (TS) content. Detailed analytical
procedures are given in Part A of this study.
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3. Results and discussion

3.1. Genesis and depositional environment of organic-rich sediments

Many geochemical parameters (Table 1) were used to determine sediment
provenance, tectonic settings, the influx of hydrothermal fluids, palaecobio-
productivity, clastic influx, palaeoconditions in the water column (redox
potential, salinity), and climatic conditions, in order to get a better insight into
the depositional environment and the genesis of organic-rich sediments of the
Aleksinac deposit. The element concentrations on which the parameters were
calculated are given in Part A of this study (section 3.1).

3.1.1. Sediment provenance

It is well known that the nature of the parent rocks influences the composition
of sedimentary rocks [18-21]. The Al/Ti ratio and the Al vs Ti diagram are
used to determine the provenance of sedimentary rocks because Al and Ti
have low solubility in water. Therefore, their ratio is relatively close to that
of the source rocks [20, 22-24]. Most samples have Al/Ti ratio values around
20, i.e. within the range of 821, which indicates intermediate igneous rock
sources (Table 1) [20]. A few samples (D1, D4, D11) have values slightly
higher than 21, signifying an origin from felsic igneous rocks. However, all of
them are plotted near the boundary line between intermediate and felsic rocks,
except for sample D16 (Al/Ti = 34; Table 1), which relates to a felsic source
(Fig. 1a) [20].

The Ti vs Zr, Th/Sc vs Zr/Sc, and Co/Th vs La/Sc diagrams are also used
to determine sediment provenance, since La, Th, Co, and Sc are immobile
elements whose distribution is less affected by the heavy-mineral fraction
than TEs such as Zr, and they are only weakly influenced by diagenesis and
metamorphism [18, 24, 28]. Furthermore, La and Th are more concentrated
in felsic rocks, whereas Sc and Co are more abundant in mafic rocks [26, 29].
In the Ti vs Zr diagram (Fig. 1b), all samples are located in the area of
intermediate igneous rocks; only sample D16 is at the border between inter-
mediate and felsic igneous rocks. In the Th/Sc vs Zr/Sc diagram (Fig. 1¢) [18],
all analysed samples are plotted in the area of felsic source rocks and have
not experienced sedimentary recycling. Consistent with the results from
Figure 1c, the Co/Th vs La/Sc diagram (Fig. 1d) suggests that most of the
analysed samples correspond to a source between andesite and felsic volcanic
rocks. According to this diagram, samples D11, D14, and D16 are more closely
related to andesites and can be distinguished from the others.

A volcanic origin is not surprising, since volcanic activity in the area of the
Aleksinac deposit during the Miocene has been proven, and volcanic material
was transported into the lake in smaller amounts but over a longer period
[30, 31]. Further evidence of volcanic activity is the presence of zeolite-group
minerals — analcime and natrolite — in all samples except D16 (fig. 1 in Part A).
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Fig. 1. Source discrimination diagrams: (a) TiO, vs AL, O, (b) TiO, vs Zr, (c) Th/Sc vs
Zr/Sc, and (d) Co/Th vs La/Sc.

According to Obradovi¢ and Vasi¢ [31], analcime in the Aleksinac deposit
formed through the alteration of volcanic glass, and it can also be formed by
the decomposition and alteration of the earlier-phase zeolite mineral natrolite
[32].

The REESs can also be used to determine sediment provenance owing to their
chemical stability during different processes such as erosion, transportation,
weathering, deposition, and diagenesis [18, 33, 34]. The analysed samples
are characterised by high LREE/HREE ratios, which is typical of felsic rock
provenance (Table 1; fig. 3 in Part A) [26, 28, 29, 35]. In oil shale, their main
sources are terrigenous inherited minerals and authigenic components [36].
The statistically significant positive correlations of REEs with constituents
of clastic minerals and negative correlations with carbonates (section 3.2 in
Part A) indicate a terrigenous origin.

3.1.2. Tectonic settings

The plate tectonic settings of the sediment source area are important due to
terrain-specific signatures and influence on the geochemical composition of
deposited sedimentary rocks [23, 37—40]. Some elements are inactive during
transportation and deposition, and therefore reflect different tectonic settings
[39, 41].
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The cross-plot K/Na vs Si (Fig. 2a) shows that most of the analysed samples
were deposited in an active continental margin, while only samples D5, D6,
and D9 correspond to a passive continental margin [40, 42]. Conversely, the
ternary diagrams Ca—K—Na and La—Th—Sc [39] show that most of the analysed
samples plot within the field of a continental island arc (Fig. 2b).

The results imply that the sediments developed in terrain with the character-
istics of an active continental margin built on a continental island arc. The ob-
tained data are not surprising, since the region of the Aleksinac deposit is known
for its very complex tectonic settings, caused by the convergence of several
oceanic and continental entities in the Tethyan realm between the African
and European plates [43]. This resulted in the formation of four geotectonic
units: the Dinarides, Carpatho-Balkanides, Serbian—-Macedonian Massif, and
Pannonian Basin [14, 43, 44]. According to Obradovi¢ and Vasi¢ [31],
the Aleksinac deposit was formed by the fragmentation of two geotectonic
units, the Carpatho-Balkanides and the Serbian—-Macedonian Massif.
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3.1.3. Hydrothermal fluids

Hydrothermal fluids mainly occur due to volcanic eruptions, lithification
processes, and atmospheric deposition, causing the input of certain elements
into deposits. They play a significant role in different geological processes.
A large amount of minerals and nutrients can be transported into the lake
by hydrothermal fluids, which usually promote the productivity of aquatic
organisms and, consequently, may lead to OM enrichment in sediments [45, 46].

TEs (Zn, Ni, Cu) and REEs (La, Ce) can be enriched in hydrothermal fluids
and, therefore, can be used to estimate whether the depositional environment
was affected by hydrothermal fluids [47—49]. Furthermore, the Co/Zn vs
Co + Cu + Ni (Fig. 3a) [50] and La vs Ce (Fig. 3b) [49] cross-plots, as well as
the Ni-Co—Zn ternary diagram (Fig. 3c) [47, 51], were used for the estimation
of hydrothermal influx.

The obtained results indicate that hydrothermal fluids influenced the
analysed samples, whereas this influence was least pronounced, or absent, in
sample D16 (Fig. 3). As noted previously, during the Lower Miocene there
was noticeable volcanic activity (Section 3.1.1), thus the hydrothermal impact
is not surprising. Additional evidence for hydrothermal fluids is provided by
the presence of hydrothermal zeolite minerals, analcime and natrolite [52],
identified in all samples except D16 (fig. 1 in Part A).
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3.1.4. Palaeobioproductivity

The content of biogenic elements is associated with biological growth and can
be used for the estimation of palaecobioproductivity, which is one of the main
factors controlling OM content in sedimentary rocks [5, 48]. The Ba content
is often used for the qualitative assessment of palacobioproductivity, as the
Ba cycle in sediments is controlled by OM content in the depositional
environment [48, 53]. The Ba/Ti and Ba/Al ratios can be used to eliminate
the dilution effect of OM and authigenic minerals in relation to the Ba
concentration in terrigenous detrital matter [54].

The strong correlation between Ti and Al (r=0.97, p<0.001) in the
analysed samples indicates that Al originates from terrigenous detrital matter
and that biogenic processes did not affect Al concentration; thus, these ratios
can be used [55]. The highest values of Ba/Ti and Ba/Al ratios are found in
samples D13 and D16, which agrees with the greatest TOC content in these
samples (Table 1; table 1 in Part A). Furthermore, Ba/Ti and Ba/Al ratios
correlate well with TOC contents in samples D1-D15 (r=0.70, p <0.01;
0.68, p <0.01, respectively; Fig. 4a).

The TOC content is controlled by primary bioproduction, along with redox
conditions and the influx of terrigenous detrital matter into the water column.
The diagram of the Cu/Mo ratio vs Cu can be used to distinguish whether the
formation of organic-rich sediments resulted from increased bioproductivity
or from reducing conditions [56, 57]. Specifically, high bioproductivity is
usually associated with elevated Cu content, whereas Mo concentration has
no impact [58]. Conversely, both Cu and Mo are enriched under anoxic
conditions. Some enrichment of these elements is found in the analysed
sediments (table 1 and fig. 5in Part A). A weak statistically significant negative
correlation between Cu/Mo and Cu (r = 0.44, p = 0.10; Fig. 4b) shows that, in
addition to palacobioproductivity (Fig. 4a), the enrichment of sediments in OM
was also controlled by reducing conditions in the depositional environment.
The same conclusion was derived from organic geochemical proxies, including
the pristane/phytane ratio, gammacerane index, and abundance of B-carotane,
as discussed in detail in earlier research [16].

Furthermore, the differences in TOC among DI1-D15 samples can also
result from varying influxes of clastic material. This is confirmed by the
statistically significant positive correlation of TOC with the CaO/SiO, ratio
(r=0.73, p<0.01; Fig. 4c) and will be discussed in more detail in the next
section.
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+ La + Ce); > CE — sum of clastic elements = Y MCE + > 'TCE.



Palaeoenvironment of organic-rich sediments 85

3.1.5. Influx of clastic material

The clastic influx can induce both OM preservation (through a faster sedimen-
tation rate, which reduces the intensity of OM degradation by aerobic microbial
communities in the water column) and the dilution of OM concentration
(through increased input of clastic material). In addition, clastic influx affects
the type of both mineral and organic matter in the oil shale [24]. Furthermore,
a greater input of clastic material increases nutrient supply, which can cause
blooms of aquatic organisms and facilitate OM enrichment [9]. Concentrations
of major clastic elements (MCEs; Ti, Al, and Si) and trace clastic elements
(TCEs; Zr, Th, Nb, Hf, La, and Ce) are used as proxies for clastic influx [59, 60],
since they are chemically stable during transportation, weathering, and
diagenesis [61].

The Ti/Al ratio is used because Ti and Al mainly occur in clastic minerals
of terrigenous origin, with Al representing aluminosilicate minerals and Ti
occurring in clay and heavy minerals [6, 41, 62, 63]. Statistically significant
positive correlations of Al with Ti, K, and Na (r=0.97, p=2.3 x 107,
r =0.86, p<0.01; r =0.75, p<0.01, respectively; Fig. 1a) indicates that
these elements are associated with clastic material [64], while the correlation
between Ti and Al implies that the clastic influx was probably derived from a
constant source (Section 3.1.4) [65, 66]. The Ti/Al ratio values in all samples
are relatively uniform (0.04—0.05), with only sample D16 slightly lower
(Ti/A1=0.03; Table 1). Additionally, similar REE distributions (fig. 3 in
Part A) show a consistent source during sediment formation, closely connected
with terrigenous clastic rocks, implying a stable terrestrial material supply [33].

The Si/Al ratio is used as a clastic influx proxy, representing the presence
of quartz in relation to clay minerals, because Si has both clastic and
biogenic origins, while Al is exclusively terrigenous [62, 67]. The values of
this parameter range between 2.41-3.52. Samples D1, D4, and D6 have the
lowest values, whereas samples D16, D13, and D2 have the highest (Table 1).
Furthermore, a statistically significant negative correlation between Ti and the
Si/Al ratio (r = 0.90, p <0.01; Fig. 4d) indicates that a certain amount of silica
originates from non-detrital input [68, 69]. Moreover, a moderate positive
correlation between quartz content and TOC (r = 0.68, p <0.01; Fig. 4e) can
be indicative of a partly biogenic origin of silica from siliceous organisms
(e.g. SiO,-rich plankton) [70, 71], suggesting that OM and part of the silica
were deposited and buried together [69].

The obtained Ti/Al results indicate that the detrital influx was relatively
constant and, therefore, could not have been a critical factor controlling
variations in OM enrichment among the studied samples (r=0.51, p = 0.05;
Fig. 4f). Conversely, the Si/Al ratio values suggest certain differences among
samples D1-D15 and show a stronger correlation with TOC (r=0.70,
p <0.01; Fig. 4g). Therefore, clastic influx could have been a significant
factor influencing the formation of these organic-rich sediments. This is more
evident when concentrations of clastic mineral constituents are used as proxies



86 Gordana Gajica et al.

for clastic influx (Fig. 4h). In Figure 4h, the strong negative correlations
of TOC with MCEs and TCEs (r Y MCE =0.86, p <0.01; r > TCE =0.70,
p <0.01;r YCE =0.77, p <0.01) clearly indicate that clastic influx resulted in
a decrease of OM concentration in the studied samples. Furthermore, the trend
of samples in Figure 4 corresponds well with TOC values (table 1 in Part A).

3.1.6. Conditions in the palacoenvironment

Climate, salinity, and redox potential are the main palaeoenvironmental
proxies that control OM accumulation and preservation. The palaeoclimate is
determined based on the C-value, and the Sr/Cu and Rb/Sr ratios; palacosalinity
is indicated by the Sr/Ba and Ca/(Ca + Fe) ratios, and REE distribution, while
palacoredox conditions are assessed by the EFs of Mo, U, V, Cu, and Ni, the
V/(V + Ni) and V/Zn ratios, as well as by the Eu anomaly.

3.1.6.1. Climate

Most processes in the lacustrine depositional environment are controlled by
climate, as it affects OM productivity, the influx of terrigenous material, and
OM preservation during sediment formation [72, 73]. Consequently, according
to some authors, climate can be a significant factor in the formation of OM-
rich sediments (e.g. [6]).

The C-value is used to determine climate, since Fe, Mn, Cr, V, Ni, and Co
are enriched in sedimentary rocks under humid climatic conditions, while Ca,
Mg, K, Na, Sr, and Ba are representative of an arid climate [74, 75]. Most of
the analysed samples have C-values between 0.21-0.39, suggesting semiarid
conditions; the C-values for samples D1, D4, and D9 are in the range of 0.42—
0.52, indicating semiarid—humid conditions, while the value for sample D2
(0.17) implies an arid climate (Table 1) [74, 75].

The Rb/Sr ratio is used to estimate palacoclimate, since Rb precipitates
and is adsorbed by clay minerals under humid conditions, whereas Sr is
deposited with carbonates during dry periods [37, 76, 77]. Consequently, high
values of the ratio indicate humid conditions, while low values reflect arid
conditions. The majority of the samples have Rb/Sr ratios < 0.3, indicating
semiarid conditions, whereas samples D1, D4, and D9 exhibit somewhat
elevated values (0.34-0.53), reflecting semiarid—humid conditions, which is
in accordance with the above-discussed C-value (Table 1).

The Sr/Cu ratio is based on the observation that the concentration of Sr
increases under arid conditions, while the concentration of Cu rises under
humid conditions. Accordingly, an elevated Sr/Cu ratio indicates a dry and
warm climate [24, 78]. Most samples (D3, D5, D6, D10, D12, D14, D15) have
St/Cu ratio values between 5-10, suggesting warm semiarid to semihumid
conditions. Samples D1, D4, D7, D9, and D11 are characterised by a Sr/Cu
ratio <5, which indicates a warm and humid climate. However, in accordance
with the above-discussed C-value and the Rb/Sr ratio, samples D1, D4,
and D9 show the lowest Sr/Cu ratio values <2.6, reflecting the highest
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palacoenvironmental humidity within the studied sample set. On the other
hand, samples D2, D8, D13, and D16 exhibit St/Cu ratio values > 10, indicating
dry and hot conditions [41, 75, 79]. It should be noted that sample D16, which
clearly differs from the rest, also displays the most significant difference in
palaeoclimate proxy values (Rb/Sr = 0.04; St/Cu = 73.74; Table 1), implying
the most pronounced aridity within the studied set.

The climate indices C-value, Rb/Sr, and Sr/Cu show significant correlations
(r=0.91, p<0.01; r=-0.89, p<0.01; r =-0.85, p<0.01, respectively).
Conversely, moderate correlations of these parameters with TOC contents in
samples D1-D15 (r=-0.51, p=0.05; r =-0.55, p <0.05; r=0.67, p <0.01,
respectively) are observed. This may imply that increased humidity caused
a higher clastic influx, which contributed more to the decrease of OM
concentration than to the increase in palacobioproductivity (i.e. blooms of
aquatic organisms). It is also documented by highly similar correlation
coefficients (r = 0.5-0.7) between the climate proxies and TOC, as well as
the S2/S3 ratio (derived from Rock-Eval data discussed in [16]), reflecting
the relative input of aquatic vs terrestrial OM and thus the quality of OM to
produce hydrocarbons.

3.1.6.2 Salinity

Salinity in the water column is one of the key factors that control the growth
of organisms in lacustrine environments and the preservation of OM [80, 81].

The Sr/Ba ratio is commonly used to estimate palacosalinity because Sr
and Ba are sensitive to salinity variations and have different geochemical
behaviour [6, 82, 83]. Sr is deposited directly from seawater, while Ba is
easily adsorbed by clay minerals and fine clastic sediments [84, 85]. A high
Sr concentration can be an indication of the inflow of seawater into the lake;
therefore, the Sr/Ba ratio increases as water salinity rises. Most of the analysed
samples have Sr/Ba > 1, which implies saline water, whereas samples D1, D4,
D6, D7, and D9 have values <1, which suggests fresh water [86, 87].

The Ca/(Ca + Fe) ratio also shows sensitivity to salinity changes [88]. Most
samples have Ca/(Ca + Fe) ratio values ranging from 0.47 to 0.73, indicating
brackish water. The exceptions are samples D1, D4, D7, and D9, which have
values of this parameter <0.40, suggesting a freshwater environment, and sample
D16, which shows a value of 0.93, indicating saline water (Table 1) [72, 88].
This is in line with conclusions derived from biomarker proxies of the analysed
samples (pristane/phytane ratio, gammacerane index, and the abundance of
[-carotane), which indicate deposition of OM in a lacustrine alkaline brackish
to freshwater environment under warm climatic conditions [16].

A good agreement between OM richness and salinity is observed (TOC vs
St/Ba ratio: r=0.70, p <0.01; TOC vs Ca/(Ca + Fe) ratio: r = 0.60, p <0.05,
for samples D1-D15). Samples D2, D13, and D16, containing the highest TOC
contents, exhibit the greatest values of both palaeosalinity proxies, whereas
samples D1, D4, D6, and D7, with the lowest TOC contents (< 3%), were
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deposited under freshwater conditions (Table 1; table 1 in Part A). The most
organic-rich sample, D16, again displays a notable difference from D1-D15,
being characterised by evidently higher Sr/Ba and Ca/(Ca + Fe) ratios (4.68
and 0.93, respectively; Table 1), clearly indicating the influence of marine
water. This observation is consistent with results from previous research,
which also showed that during the deposition of sediments represented by
D16, there was a marine inflow from the Paratethys Sea as a result of regional
tilting of the area during the Lower Miocene [16].

Generally, salinity is controlled by climate, because the salinity of water
increases under warm and arid conditions as a result of evaporation [89, 90].
This is also reflected within the studied sample set, since statistically significant
correlations between the climate indices (C-value, Rb/Sr, Sr/Cu) and salinity
proxies (Sr/Ba and Ca/(Ca + Fe)) are observed (r ranging from 0.84 to 0.94).

3.1.6.3 Redox conditions

According to some authors, anoxic conditions are the main factor regulating
OM enrichment and fixation within sediments [80, 91]. Such settings are
controlled by climatic and hydrographic conditions and can develop within
stratified water columns due to salinity and/or temperature gradients [56].
TEs such as Cr, Ni, V, U, Th, Mo, Cu, and Co can be used as redox tracers
because their oxidation state and solubility are influenced by the redox status
of the palaeoenvironment [22, 56, 58, 92-94].

The analysed samples showed enrichment in Mo, U, V, Cu, Ni, and Zn
(section 3.3 in Part A). The enrichment of these elements is typical of deposits
formed under anoxic conditions and usually indicates that such conditions were
associated with high palaeobioproductivity [7, 95]. The parameters V/(V + Ni)
and V/Zn (Table 1) also indicate anoxic conditions in the depositional environ-
ment [62, 96, 97]. This agrees with conclusions drawn from biomarker proxies
presented in previous studies [16, 17], which are also considered reliable
indicators of redox conditions.

For more detailed monitoring, EFs for redox tracers [8, 56, 98] were
calculated for each sample individually (Table 1). Interestingly, in most cases,
the highest enrichment of these elements is found in samples D1, D4, and
D7, which exhibit the lowest TOC contents (Table 1; table 1 in Part A). In
contrast, the lowest EF values are observed for the most organic-rich sample,
D16. Therefore, the obtained data may indicate that the lower TOC contents
in samples D1, D4, and D7 were not caused by a change in anoxic redox
conditions but rather by the dilution of OM concentration due to clastic influx
(Section 3.1.5).

This interpretation is in accordance with biomarker redox proxies, which
clearly indicate a stable water column level (i.e. anoxic settings) during the
formation of samples D1-D15, as well as elevated values of the gammacerane
index, associated with a steadily low pristane/phytane ratio, particularly in
samples D1, D4, and D7 [16]. On the other hand, the lowest redox tracer EFs
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for sample D16 coincide with biomarker parameters implying a shallower
but stratified and more saline calm water column [16], as well as with
palacoclimate indices indicating arid and warm climatic conditions (Section
3.1.6.1).

3.2. Integrative implications for the formation of organic-rich sediments
in the Dubrava block

The characteristics of the lacustrine depositional environment affect the
formation of organic-rich sediments and kerogen type, and therefore their
potential to produce liquid hydrocarbons. These characteristics are recorded
in the geochemical features of sediments and can be obtained from analyses of
both organic and inorganic matter ([5, 60, 65, 99, 100] and references therein).

Both inorganic and organic data clearly show a notable difference in sample
D16 (Fig. 5a) and certain differences among samples D1-D15 (Fig. 5b).
Although D16 is the only sample of its type in the analysed series, it clearly
reflects the transition from a swamp environment to a lacustrine one, as well
as the geological evolution of the basin.

Sample D16 was formed just above the main coal seam, which indicates
significant changes in sedimentary conditions. The main factors that induced
this were probably tectonic activity and climate change, which have led to a
transgression [31]. Sample D16 is characterised by the highest proportion of
carbonate minerals (63.87 wt%; fig. 1 in Part A), the exclusive presence of
the carbonate mineral aragonite and the sulphate mineral bassanite [16], and
the absence of feldspar and zeolite group minerals (natrolite and analcime).
It also shows lower concentrations of almost all TEs and REEs.

Geochemical data indicate differences in provenance and tectonic settings
between sample D16 (more felsic) and samples D1-D15 (Sections 3.1.1 and
3.1.2), while D16 was not influenced by hydrothermal fluids (Section 3.1.3).
Sample D16 is also characterised by higher palaeobioproductivity (the highest
Ba/Al and Ba/Ti ratios; Section 3.1.4) and significantly lower detrital input
(the highest Si/Al ratio and the lowest concentrations of constituents of clastic
minerals and TEs; Section 3.1.5; sections 3.1.1 and 3.1.3 in Part A).

The salinity parameters (Sr/Ba, Ca/(Ca + Fe); Section 3.1.6.2) indicate
marine water inflow into the lake. As mentioned, sample D16 has the highest
content of carbonate minerals (fig. 1 in Part A), which are associated with
an arid climate and alkaline environment [101]. Moreover, the enrichment
in carbonate minerals also means that there was no substantial detrital or
terrestrial material influx into the lake, which led not only to OM enrichment
but also to the dilution of almost all TE and REE concentrations, except for
Cs, Sr, Cr, and Ni [23]. The Sr enrichment is attributed to marine transgression
and the formation of a large amount of the carbonate mineral aragonite [16].

Cr and Ni are redox-sensitive elements; hence, reducing conditions
favoured their enrichment in sediments [57]. The high concentration of Ni can
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Fig. 5. Sketch illustrating the depositional environments during oil shale formation of
(a) sample 16 and (b) samples D1-D15.

also originate from seawater inflow [102] and/or high OM flux [56], while a
notably increased content of S can explain the enrichment of Cs in this sample
only (6.11 wt%; table 1 in Part A) [103] and/or elevated water temperature
[104].

During the formation of sediments represented by sample D16, the climate
was warm and arid (Section 3.1.6.1; see also the presence of bassanite
and aragonite in section 3.1.1 in Part A). Such conditions enhanced water
evaporation, resulting in a lower water level, higher insolation, and weaker
circulation within the water body, consequently favouring stratification.
These conditions led to an anoxic environment at depth, which contributed to
better OM preservation. Combined with high palaecobioproductivity (mainly
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favourable for the growth of algae and sulphur-reducing bacteria) and a
low clastic input (minimising the dilution effect on OM concentration), this
resulted in the highest TOC content.

All the above observations derived from the study of inorganic components
are in accordance with the detailed characterisation of OM [16, 17]. The OM
study also implied a calm alkaline environment and pointed out sudden
ingressions of marine water into the basin. The water column was shallow but
stratified due to the somewhat increased salinity and elevated temperature.
Such conditions led to high palacobioproductivity, significant deposition, and
preservation of aquatic OM (mainly algae and bacterial remnants) [16, 17].

Additionally, it is well known (e.g. [105—107]) that the sudden mixing of a
thermally stratified freshwater column, caused by sporadic storms or marine
water ingressions, induces oxygen deprivation and/or salt stress. Such events
cause environmental shock and mass mortality of aquatic biota due to their
inability to adapt, thus promoting enhanced OM deposition at the sediment—
water interface and the local formation of organic-rich layers. Consequently,
any of the phenomena explained above can lead to the formation of sediments
extremely rich in OM (TOC 29.10 wt%; table 1 in Part A), consisting of a
mixture of oil-prone kerogen types [ and II [16, 17].

After the deposition of sediments represented by sample D16, the lake
deepened over time, probably due to further tectonic activity (Section 3.1.2)
and climate change (still warm, but more humid climate; Section 3.1.6.1).
Due to the semiarid/semihumid to humid climate, freshwater inflow into
the lake occurred, leading to a rise in water level (brackish—fresh lake) that
is usually accompanied by a higher terrigenous influx of clastic material.
The clastic influx carried nutrients into the lake, causing blooms of aquatic
organisms (mainly primary producers, such as green and brown algae,
and bacteria) and increasing the sedimentation rate. Generally, a faster
sedimentation rate contributes to better OM preservation but also leads to its
reduced concentration due to dilution by clastic material [108]. Furthermore,
the freshwater inflow into the lake resulted in a very low S content in samples
D1-D15 (0.06-0.23 wt%; table 1 in Part A), compared with D16 (6.11 wt%).

As the lake is a dynamic system, during the formation of sedimentary rocks
represented by samples D1-D15, there were fluctuations in bioproductivity,
water column level, and stratification, which were consequence of changes
in humidity, freshwater inflow, and hydrothermal and clastic influx. All these
factors resulted in geochemical variations among samples D1-D15, grouping
them into two subclusters. One subcluster (Ib) comprises samples D1, D4, D6,
D7, and D9, whereas the second (Ia) includes the remaining samples, among
which a slight distinction between samples D2 and D13 is observed, with
more pronounced clustering of D13 (section 3.1.3 in Part A).

The samples of subcluster Ib are characterised by the lowest TOC contents
(table 1 in Part A), a high content of clay minerals, a relatively high content
of feldspar minerals, absence or very low content of quartz, the lowest
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amount of carbonate minerals (section 3.1.1 in Part A), high concentrations
of REEs (section 3.1.4 in Part A), the highest humidity / the lowest salinity
(Sections 3.1.6.1 and 3.1.6.2), and high clastic input (Section 3.1.5). This
particularly applies to samples D4, D6, and D7, which show the highest
influx of clastic terrigenous material, as indicated by the REE distributions
(Section 3.1.1), kerogen type, and biomarkers [16]. The V/(V +Ni) and
V/Zn ratios, EFs for redox tracers, and biomarker proxies (gammacerane
index and pristane/phytane ratio; [16]) clearly imply anoxic redox conditions.
Therefore, the lowering of TOC content in the samples of subcluster Ib
can mostly be attributed to a decrease of OM concentration due to clastic
influx (Section 3.1.5), rather than to a change in anoxic redox conditions.
Furthermore, this also signifies that the reduced OM potential for liquid
hydrocarbon generation in samples D4, D6, and D7 (i.e. the presence of
type III kerogen; [16]) was mainly controlled by the clastic influx that resulted
in an increased impact of allochthonous higher-plant biomass.

The samples from subcluster Ia are characterised by a substantial content
of OM (with high hydrocarbon generation potential, i.e. kerogen types I
and II), resulting from high palacobioproductivity, further supported by
hydrothermal fluids (as documented by the presence of analcime and natrolite
and corresponding parameters; Section 3.1.3) and anoxic redox conditions
(Section 3.1.6.3). A moderate clastic influx is observed. Both inorganic data
and biomarker proxies suggest a relatively high and stable brackish water
column, the stratification of which was supported by a warm semiarid/
semihumid climate.

Sample D13 differs from the other samples of subcluster la by a relatively
higher TOC content (~13 wt%; table 1 in Part A), a higher content of carbonate
minerals and quartz, a lower amount of feldspar and clay minerals, lower
REE content, and a lower clastic input (Section 3.1.5; sections 3.1.1-3.1.3
in Part A). Among numerous parameters, the most evident distinguishing
feature of sample D13 is its more pronounced aridity (Sections 3.1.6.1 and
3.1.6.2), which may have caused a lower clastic influx (similar to the case of
sample D16), resulting in less OM dilution and a slight increase in alkalinity/
salinity. This calm, alkaline, arid environment was favourable for the
deposition of carbonates, but also for the blooming of aquatic biota (increased
nutrient concentration due to evaporation), as documented by the highest
palaeobioproductivity index values (Section 3.1.4). Furthermore, the calm
environment and warm conditions promoted water stratification and anoxic
settings, contributing to good algal OM preservation. The obtained results
are in accordance with OM proxies, which indicate the highest hydrocarbon
generation potential and enrichment in precursor algal biomass in sample D13
(type I kerogen; [15-17]).

Finally, the slight separation of sample D2 (fig. 2 in Part A) can also be
attributed to enhanced aridity and palacobioproductivity. This sample showed
almost equal values of Y REEs (section 3.1.4 in Part A) and climate and
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salinity proxies as sample D13 (Sections 3.1.6.1 and 3.1.6.2). In addition,
it is associated with the highest carbonate content (section 3.1.1 in Part A)
and palaeobioproductivity parameters (Section 3.1.4), as well as the lowest
content of MCEs and TCEs after sample D13 (Section 3.1.5), among the
samples comprising subcluster Ia.

It should be noted that the classification of samples based on mineral
composition and concentrations of major, trace, and rare earth elements, in
addition to full accordance with Rock-Eval data and biomarker proxies, and
a clear indication of the main factors causing differences in organic richness,
also revealed thorough consistency with lithology (Table 1; fig. 2 in Part A).

4. Conclusions

A detailed inorganic geochemical characterisation of the Upper layer of
Aleksinac oil shale in the Dubrava block was performed.

An andesite to felsic origin is presumed for the studied samples, with evident
volcanic activity, also documented by the presence of zeolite group minerals
(analcime and natrolite). Accordingly, sediment formation was influenced by
hydrothermal fluids, which promoted the productivity of aquatic organisms
and thus led to OM enrichment. The sediments developed in terrain with
active continental margin characteristics and were built on a continental island
arc, consistent with the complex tectonic settings of the Aleksinac deposit and
its formation through fragmentation of two geotectonic units, the Carpatho-
Balkanides and the Serbian—-Macedonian Massif.

Palacoenvironmental indicators derived from concentrations of major,
trace, and rare earth elements showed good accordance with organic geo-
chemical data from previous detailed studies, indicating deposition of the
sediments in an anoxic lacustrine environment of variable salinity (from saline
to freshwater) under warm, arid, and semiarid/semihumid climatic conditions.
Such conditions favoured primary bioproductivity in the lake, whereas a
stably stratified water column, with highly reducing bottom water, enhanced
OM preservation.

Classification of the samples based on mineral composition and
concentrations of major, trace, and rare earth elements resulted in two main
clusters (I and II), showing a distinct separation of two subclusters within
the first group. This classification revealed good accordance with Rock-Eval
data, biomarker proxies, and lithology, clearly indicating the main factors that
caused differences in organic richness.

Samples D1-D15, forming the first cluster, are characterised by variable
contents of clays, feldspars, quartz, carbonates, TOC (~1-13 wt%), and S
(0.06 0.23 wt%), as well as concentrations of trace and rare earth elements.
Within this group, samples D1, D4, D6, D7, and D9, comprising subcluster
Ib, clearly stand out from the remaining samples (subcluster la), based on the
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increased contents of all clastic constituents and rare earth elements, absence
or very low content of quartz, the lowest amount of carbonate minerals, and
the lowest TOC contents (~1-3 wt%).

The second cluster comprises sample D16, which notably differs from
all other samples (D1-D15) and is the first sample deposited after the main
coal seam. It is characterised by the highest content of carbonate minerals
(63.87 wt%), OM (TOC 29.10 wt%), and S (6.11 wt%), the exclusive presence
of the carbonate mineral aragonite and the sulphate mineral bassanite, the
absence of feldspar and zeolite group minerals, and lower concentrations
of almost all trace and rare earth elements (except Cs, Sr, Cr, and Ni).
The greatest OM-enrichment in sample D16 resulted mainly from the warm
and arid climate, and marine water ingressions, which created favourable
conditions for primary producers, whereas the calm, alkaline, stratified anoxic
water column contributed to excellent preservation of aquatic OM. Warm and
arid conditions also minimised clastic input.

The main change in the depositional environment of the sediments
represented by samples D1-D15 in relation to sample D16 occurred due to
tectonic activity and climate change. A more humid (semiarid/semihumid, but
still warm) climate, together with freshwater inflow into the lake, raised the
water level (brackish—fresh lake, low S content), while maintaining the anoxic
settings that promoted OM preservation, but also increasing the influx of
clastic terrigenous material. Detailed analysis of palacoenvironmental proxies,
which showed accordance with biomarker parameters, clearly revealed that
the lowering of TOC and the segregation of samples D1, D4, D6, D7, and D9
into a separate subcluster resulted from humid episodes that promoted clastic
influx, rather than from changes in anoxic redox conditions. Furthermore, the
lowering of OM potential for liquid hydrocarbon generation in samples D4,
D6, and D7 (i.e. the presence of type III kerogen) was also mainly controlled
by the clastic influx that resulted in the increased impact of allochthonous
higher-plant biomass.

The obtained results represent valuable palacoenvironmental records for
the study area and can contribute to future exploration and utilisation of oil
shale in the Aleksinac deposit.
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