ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2024): 1.4
Research article
Major, trace, and rare earth elements geochemistry and enrichment in the Neogene organic-rich sediments from the Aleksinac deposit (Serbia): Part A; pp. 54–74
PDF | https://doi.org/10.3176/oil.2026.1.03

Authors
Gordana Gajica ORCID Icon, Aleksandra Šajnović ORCID Icon, Ksenija Stojanović ORCID Icon, Milan D. Antonijević ORCID Icon, Aleksandar Kostić†, Branimir Jovančićević ORCID Icon
Abstract

The composition of inorganic matter and the enrichment of trace and rare earth elements (TEs and REEs) in the Neogene organic matter-rich sediments in the Upper layer of the Aleksinac deposit (Dubrava block, Serbia) were analysed. Correlation analysis clearly showed that TEs and REEs are associated with SiO2, Al2O3, K2O, and TiO2, clastic minerals, clay, and feldspar, as well as zeolite minerals natrolite and analcime, indicating that the TEs and REEs were brought into the basin mainly by clastic material. Their distribution indicates certain changes in the depositional environment during the formation of these sediments. According to enrichment factors (calculated in relation to World Oil Shales, Upper Continental Crust, and Post-Archaean Australian Shale) and the degree of enrichment (relative to argillaceous rocks), the Aleksinac oil shale shows significant enrichment in Mo, a lesser degree in Sr, and possible enrichment in Cu. Therefore, there are no concerns regarding toxic trace elements in the Aleksinac oil shale.

References

1. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. 2nd ed. Springer-Verlag, Heidelberg, 1984. 
https://doi.org/10.1007/978-3-642-87813-8

2. Dyni, J. R. Geology and Resources of Some World Oil Shale Deposits. U.S. Geological Survey Scientific Investigations Report 2005–5295, Reston, 2006. 
https://doi.org/10.3133/sir29955294

3. Ercegovac, M. Geologija uljnih škriljaca (Geology of Oil Shales). Građevinska knjiga, Beograd, 1990. 

4. Ercegovac, M., Grgurović, D., Bajc, S., Vitorović, D. Oil shale in Serbia: geo-logical and chemical-technological investigations, actual problems of exploration and feasibility studies. In Mineral Material Complex of Serbia and Montenegro at the Crossings of Two Millenniums (Vujić, S., ed.). Margo-Art, Belgrade, 2003, 368–378.

5. Song, D. Y., Ma, Y. J., Qin, Y., Wang, W. F., Zheng, C. G. Volatility and mobility of some trace elements in coal from Shizuishan Power Plant. Journal of Fuel Chemistry and Technology, 2011, 39(5), 328–332. 
https://doi.org/10.1016/S1872-5813(11)60024-8

6. Fu, X., Wang, J., Zeng, Y., Tan, F., Feng, X. Concentration and mode of occurrence of trace elements in marine oil shale from the Bilong Co area, northern Tibet, China. International Journal of Coal Geology, 2011, 85(1), 112–122. 
https://doi.org/10.1016/J.COAL.2010.10.004

7. Fu, X., Wang, J., Zeng, Y., Tan, F., Feng, X. Trace elements and their behaviour during the combustion of marine oil shale from Changliang Mountain, northern Tibet, China. Environmental Earth Sciences, 2012, 70, 1125–1134. 
https://doi.org/10.1007/s12665-012-2199-5

8. Vallner, L., Gavrilova, O., Vilu, R. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia. Science of The Total Environment, 2015, 524–525, 400–415. 
https://doi.org/10.1016/j.scitotenv.2015.03.130

9.  Han, Y. W, Ma, Z. D., Zhang, H. F., Zhang, B. R., Li, F. L., Gao, S. et al. Geochemistry. Geological Publishing House, Beijing, 2003. 

10. Gluskoter, H. J., Ruch, R. R., Miller, W. G., Cahill, R. A., Dreher, G. B., Kuhn, J. K. Trace Elements in Coal: Occurrence and Distribution. Illinois State Geological Survey, Circular 499, Urbana, 1977.

11. Fu, X., Wang, J., Tan, F., Feng, X., Zeng, S. The geochemistry of trace elements in marine oil shales and their combustion residues: occurrence and environmental aspects. Energy Sources A: Recovery Utilization, and Environmental Effects, 2016b, 38(3), 410–419. 
https://doi.org/10.1080/15567036.2013.769036

12. Taylor, S. R., McLennan, S. M. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, 1985. 

13. Taylor, S. R., McLennan, S. M. The geochemical evolution of the continental crust. Reviews of Geophysics, 1995, 33(2), 241–265. 
https://doi.org/10.1029/95RG00262

14. Patterson, J. H., Ramsden, A. R., Dale, L. S., Fardy, J. J. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chemical Geology, 1986, 55(1–2), 1–16. 
https://doi.org/10.1016/0009-2541(86)90123-3

15. Gao, S., Luo, T.-C., Zhang, B.-R., Zhang, H.-F., Han, Y.-W., Hu, Y.-K. et al. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 1998, 62(11), 1959–1975. 
https://doi.org/10.1016/S0016-7037(98)00121-5  

16. McLennan, S. M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2001, 2(4), 2000GC00010. 
https://doi.org/10.1029/2000GC000109

17. Rudnick, R., Gao, S. Composition of the Continental Crust. In Treatise on Geo-chemistry 3 (Holland, H. D, Turekian, K. K., eds). Elsevier-Pergamon, Oxford, 2003, 1–64.
https://doi.org/10.1016/B0-08-043751-6/03016-4

18. Haskin, L. A., Wildeman, T. R., Haskin, M. A. An accurate procedure for the determination of the rare earths by neutron activation. Journal of Radioanalytical and Nuclear Chemistry, 1968, 1, 337–348. 
https://doi.org/10.1007/BF02513689

19. Boynton, W. V. Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (Henderson, P., ed.). Elsevier, New York, 1984, 63–114. 
https://doi.org/10.1016/B978-0-444-42148-7.50008-3

20. Gromet, L. P., Haskin, L. A., Korotev, R. L., Dymek, R. F. The “North American shale composite”: its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 1984, 48(12), 2469–2482. 
https://doi.org/10.1016/0016-7037(84)90298-9

21. Wedepohl, K. H. Environmental influences on the chemical composition of shales and clays. Physics and Chemistry of the Earth, 1971, 8, 307‒331. 
https://doi.org/10.1016/0079-1946(71)90020-6  

22. Wedepohl, K. H. The composition of the upper Earth’s crust and the natural cycles of selected elements. Metals in natural raw materials. Natural resources. In Metals and Their Compounds in the Environment (Merian, E., ed.). VCH, Weinheim, 1991, 3–17.

23. Heinrichs, H., Schulz-Dobrick, B., Wedepohl, K. H. Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochimica et Cosmochimica Acta, 1980, 44(10), 1519‒1533. 
https://doi.org/10.1016/0016-7037(80)90116-7  

24. Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2–4), 344–361. 
https://doi.org/10.1016/j.palaeo.2005.05.011

25. Shpirt, M. Y., Punanova, S. A. Comparative assessment of the trace-element composition of coals, crude oils, and oil shales. Solid Fuel Chemistry, 2007, 41, 267–279. 
https://doi.org/10.3103/S0361521907050023

26. Ross, D. J. K., Bustin, R. M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian–Mississippian shales, Western Canadian Sedimentary Basin. Chemical Geology, 2009, 260(1–2), 1–19. 
https://doi.org/10.1016/j.chemgeo.2008.10.027

27. Jelenković, R., Kostić, A., Životić, D., Ercegovac, M. Mineral resources of Serbia. Geologica Carpathica, 2008, 59(4), 345–361.

28. Obradović, J., Djurdjević-Colson, J., Vasić, N. Phytogenic lacustrine sedimentation – oil shales in Neogene from Serbia, Yugoslavia. Journal ofPaleolimnology, 1997, 18, 351–364. 
https://doi.org/10.1023/A:1007907109399  

29. Obradović, J., Vasić, N. Jezerski baseni u neogenu Srbije (Neogene Lacustrine Basins from Serbia). Srpska akademija nauka i umetnosti, Beograd, 2007. 

30. Marović, M. Neotektonski sklop Aleksinačkog Pomoravlja (Neotectonic complex of Aleksinac Pomoravlje). Geološki Anali Balkanskoga Poluostrva, 1988, 51, 215–219.

31. Ercegovac, M., Vitorović, D., Kostić, A., Životić, D., Jovančićević, B. Geology and Geochemistry of the “Aleksinac” oil shale deposit (Serbia). In Joint 61st ICCP/26th TSOP Meeting, Advances in Organic Petrology and Organic Geochemistry, 19–26 September 2009, Gramado, Brazil, 13.

32. Gajica, G., Šajnović, A., Stojanović, K., Antonijević, M., Aleksić, N., Jovančićević, B. The influence of pyrolysis type on shale oil generation and its composition (Upper layer of Aleksinac oil shale, Serbia). Journal of the Serbian Chemical Society, 2017b, 82(12), 1461–1477. 
https://doi.org/10.2298/JSC170421064G

33. Gajica, G., Šajnović, A., Stojanović, K., Kostić, A., Slipper, I., Antonijević, M. et al. Organic geochemical study of the Upper layer of Aleksinac oil shale in the Dubrava block, Serbia. Oil Shale, 2017, 34(3), 197–218. 
https://doi.org/10.3176/oil.2017.3.01  

34. Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A. Trace metals as paleo-redox and paleoproductivity proxies: an update. Chemical Geology, 2006, 232(1–2), 12–32. 
https://doi.org/10.1016/j.chemgeo.2006.02.012

35. Ferriday, T., Montenari, M. Chemostratigraphy and chemofacies of source rock analogues: a high-resolution analysis of black shale successions from the lower Silurian Formigoso Formation (Cantabrian Mountains, NW Spain). In Stratigraphy & Timescales (Montenari, M., ed.). Elsevier Science, Amsterdam, 2016, 123–255.
https://doi.org/10.1016/bs.sats.2016.10.004

36. Mukhopadhyay, P. K., Goodarzi, F., Crandlemire, A. L., Gillis, K. S., MacNeil, D. J., Smith, W. D. Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton Basins, Nova Scotia, Eastern Canada. International Journal of Coal Geology, 1998, 37(1–2), 113–141. 
https://doi.org/10.1016/S0166-5162(98)00020-2

37. Fu, X., Wang, J., Zeng, Y., Tan, F., Feng, X. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China. International Journal of Coal Geology, 2010, 81(3), 191–199. 
https://doi.org/10.1016/j.coal.2009.12.006

38. Tao, S., Xu, Y., Tang, D., Xu, H., Li, S., Chen, S. et al. Geochemistry of the Shitoumei oil shale in the Santanghu Basin, Northwest China: implications for paleoclimate conditions, weathering, provenance and tectonic setting. International Journal of Coal Geology, 2017, 184, 42–56. 
https://doi.org/10.1016/j.coal.2017.11.007

39. Wang, Z., Fu, X., Feng, X., Song, C., Wang, D., Chen, W. et al. Geochemical features of the black shales from the Wuyu Basin, southern Tibet: implications for palaeoenvironment and palaeoclimate. Geological Journal, 2017, 52(2), 282–297. 
https://doi.org/10.1002/gj.2756

40. Zhao, M., Liu, Y., Jiao, X., Zhou, D., Meng, Z., Yang, Y. Major, trace and rare earth element geochemistry of the Permian Lucaogou oil shales, eastern Junggar Basin, NW China: implications for weathering, provenance and tectonic setting. Australian Journal of Earth Sciences, 2023, 70(4), 585–602. 
https://doi.org/10.1080/08120099.2023.2186951  

41. Wu, C., Tuo, J., Zhang, M., Liu, Y., Xing, L., Gong, J. et al. Multiple controlling factors of lower Palaeozoic organic-rich marine shales in the Sichuan Basin, China: evidence from minerals and trace elements. Energy Exploration & Exploitation, 2017, 35(5), 627–644. 
https://doi.org/10.1177/0144598717709667  

42. Liang, Y., Zhang, J., Liu, Y., Tang, X., Li, Z., Ding, J. et al. Evidence for biogenic silica occurrence in the Lower Silurian Longmaxi shale in southeastern Chongqing, China. Minerals, 2020, 10(11), 945. 
https://doi.org/10.3390/min10110945

43. Pipe, A. B., Leybourne, M. I., Johannesson, K. H., Hannigan, R. E., Layton-Matthews, D. Trace and rare earth element geochemistry of black shales from the Upper Ordovician Utica Shale magnafacies. Chemical Geology, 2025, 672, 122507. 
https://doi.org/10.1016/j.chemgeo.2024.122507

44. Dar, S. A., Khan, K. F., Birch, W. D. Sedimentary: phosphates. In Reference Module in Earth Systems and Environmental Sciences (Elias, S. A., ed.). Elsevier, 2017.
https://doi.org/10.1016/B978-0-12-409548-9.10509-3

45. Wall, F. Rare earth elements. In Encyclopedia of Geology, 2nd ed. (Alderton, D., Elias, S. A., eds). Academic Press, London, 2021, 680–693.
https://doi.org/10.1016/B978-0-08-102908-4.00101-6

46. Al-Ayed, O. S., Qawaqneh, M. K., Abu-Nameh, E. S. M. Tracing rare earth elements in oil shale ash. Oil Shale, 2024, 41(2), 132–143. 
https://doi.org/10.3176/oil.2024.2.04  

47. Algeo, T. J., Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 2009, 268(3–4), 211–225. 
https://doi.org/10.1016/j.chemgeo.2009.09.001

Back to Issue