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Abstract. The composition of inorganic matter and the enrichment of trace
and rare earth elements (TEs and REEs) in the Neogene organic matter-rich
sediments in the Upper layer of the Aleksinac deposit (Dubrava block, Serbia)
were analysed. Correlation analysis clearly showed that TEs and REEs
are associated with SiOZ, AIZO_?, KZO, and TiOz, clastic minerals, clay, and
feldspar, as well as zeolite minerals natrolite and analcime, indicating that the
TEs and REEs were brought into the basin mainly by clastic material. Their
distribution indicates certain changes in the depositional environment during
the formation of these sediments. According to enrichment factors (calculated
in relation to World Oil Shales, Upper Continental Crust, and Post-Archaean
Australian Shale) and the degree of enrichment (relative to argillaceous rocks),
the Aleksinac oil shale shows significant enrichment in Mo, a lesser degree in
Sy, and possible enrichment in Cu. Therefore, there are no concerns regarding
toxic trace elements in the Aleksinac oil shale.
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1. Introduction

Oil shales are the subject of numerous research activities due to their economic
importance as a potential energy source and industrial raw material, since
they represent an important reservoir of organic carbon and trace elements.
The inorganic matter makes up the largest part of the oil shale, while the organic
matter (OM) is dispersed within it, most often forming a homogeneous mixture.
Generally, oil shales are characterised by fine lamination in which laminae of
mixed organic and mineral matter, and pure mineral material alternate [1]. Oil
shales vary in the content of the inorganic part, which commonly ranges from
60% to 90% [2].

As the prevalent part of oil shale comprises inorganic matter, the analysis
of mineral and chemical composition (major, trace, and rare earth elements)
is important for utilisation, economic-geological, environmental, and geo-
chemical aspects. Oil shales enriched in certain elements can be used as a
mineral raw material in metallurgy. From the economic-geological assessment
of oil shale deposits, the content of certain individual elements (e.g. V, Zn,
Cu, and U) may contribute to its greater value. On the other hand, during
the exploitation and processing of oil shales, there is a possible mobilisation
and concentration of elements, leading to their release into the water, air, and
soil. This is undesirable from the aspect of environmental protection and can
have a negative impact on the environment and health, especially if certain
elements are present in high concentrations [3-9].

The trace and rare earth elements (TEs and REEs, respectively) are
present in low concentrations in oil shale; they do not exist independently
and can be found in the form of organometallic compounds, embedded in the
crystal structure of minerals, or in a dispersed state on clay and oxyhydroxide
particles [10]. It has been proven that oil shales can be enriched in certain
TEs and REEs, as can other OM-rich sediments, e.g. coals [7, 11, 12].
Elevated concentrations of certain elements in oil shales can be determined by
comparing their contents with some ‘standard values’. The most commonly
used ‘standard values’ are the composition of the Upper Continental Crust
(UCC) [13-18], Post-Archaean Australian Shale (PAAS) [13], North American
Shale (NASC) [19-21], the average World Oil Shales (WOS) [22-26], and
argillaceous rocks [26]. The TEs enrichment and geochemical investigation
of OM-rich sediments also require an analysis of major element distribution,
as these elements are diagenetically stable and can reflect the sedimentary
background (terrigenous detrital influence) [27].

The Aleksinac oil shale deposit is the largest and richest oil shale deposit
in Serbia and has significant economic importance [4, 28]. Therefore, it is the
most investigated oil shale in Serbia, but studies on its inorganic composition
are rare. The aims of this study were to determine: (i) the composition of
inorganic matter; (ii) the geochemical association of elements; and (iii) the
enrichment of TEs and REEs. Outcrop samples from the Upper layer of
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the Dubrava block of the Aleksinac deposit were selected for this study.
The study’s findings may be useful for future exploration and utilisation of
oil shales.

2. Samples and analytical methods

2.1. Samples and geological background

The Aleksinac deposit was formed within the Great Moravian—South Moravian
Depression during the Neogene, within a lake basin that developed due to
tectonic activities, climatic conditions, and the inflow of water and clastic
material [28, 29]. According to some authors [29, 30], the area of the Aleksinac
basin was located on two geotectonic units, the Carpatho-Balkanides and the
Serbian—-Macedonian Massif, and the lake sediments were deposited in tectonic
depressions formed by the fragmentation of these two geotectonic units.
The Aleksinac basin is filled with Lower and Upper Miocene lake sediments.
However, oil shales were formed only during the Lower Miocene [3].
These sediments are characterised by the rhythmic appearance of different
lithological units and oil shales, indicating frequent sedimentation changes [29].
The Lower Miocene sediments are of lacustrine origin: they start with red
conglomerates, overlain by alluvial-lacustrine sandstones, with some sandy
shale and siltstone in the upper layers. Above these sediments, two layers
of oil shales (Lower and Upper) were deposited, with the Aleksinac Main
coal seam located between them. A layer of Upper Miocene marl, clay, sand,
and conglomerate unconformably covers the Lower Miocene complex. As a
result of complex tectonic movements, the Aleksinac deposit is divided by
fault zones into three main blocks from north to south: Dubrava, Morava, and
Logoriste [3, 30, 31]. According to certain characteristics of organic matter
and mineral base, the Aleksinac deposit is closest to the Green River shale, in
which the deposition of sedimentary rocks took place in a shallow reducing
environment of a stratified, brackish—saline alkaline lake [3, 29].

For this study, sediment samples were taken from the Dubrava block,
from the outcropping Upper oil shale layer. Sixteen samples (D1-D16) were
collected as discontinuous channel samples comprising a 250 m thick series,
from the top of the bituminous marl sequence to the bottom of the Upper oil
shale layer, just above the Main coal seam. The Upper oil shale layer is much
thicker and more accessible, and thus easier for exploitation and processing.
A detailed description of the lithostratigraphic column of the analysed samples
is provided in previous publications [32, 33].

Based on mineral composition, eight samples are defined as marlstones
(D2, D3, D5, D8, D12-D15), five as mudstones (D1, D4, D6, D7, D9), two
as calcareous mudstones (D10, D11), and one as calcareous marlstone (D16;
Table 1) [33].
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2.2. Analytical methods

2.2.1. Inductively coupled plasma optical emission spectroscopy

The content of major elements was determined by inductively coupled plasma
optical emission spectroscopy (ICP-OES, Thermo iCAP 6500). Lithium
metaborate (LiBO,) fusion was used to prepare sample solutions for the
analysis. The samples were mixed with LiBO, flux in graphite crucibles,
and the crucibles were then fused in a furnace at 900 °C for 15 min. After
cooling, the content from the crucibles was transferred into plastic bottles
and dissolved with 150 cm® of 3.5% HNO,. The samples were mixed using a
magnetic stirrer for an hour, then filtered and dissolved with deionised water
to a volume of 250.00 cm®.

2.2.2. Inductively coupled plasma mass spectrometry

The content of 39 TEs and REEs was determined by inductively coupled
plasma mass spectrometry (ICP-MS, Thermo X Series II ICP-MS). The
samples were prepared in the same way as for ICP-OES analysis. From the
obtained solution, 0.25 cm® was placed in a test tube and supplemented with
an internal standard solution to a volume of 5.00 cm®. The internal standard
solution contained 1.05 cm® of Rh solution (concentration 10 ppm Rh in
3% HNO,), 60 cm?® of concentrated nitric acid, and deionised water to a total
volume 0f2000 cm®. A rack of samples on both instruments (ICP-OES and ICP-
MS) comprised, in addition to samples, three analytical blanks, one internal
reference material (BEN), four certified reference materials (OU, SCO, ACE,
and GCN), and two standards (QC1 and QC2), which enabled a quick check
of analytical quality. Before analysing the prepared blanks, standards, and
samples, a high-purity standard (SD12) was used for instrument calibration
and stabilisation. ICP-OES and ICP-MS measurements were carried out in
triplicate.

2.2.3. Rock-Eval pyrolysis, elemental analysis, and XRD analysis

The total organic carbon (TOC) content was determined by Rock-Eval pyro-
lysis using a Rock-Eval 6 Standard analyser. The content of total sulphur (TS)
was measured with an elemental analyser (Vario EL 11I, CHNOS Elemental
Analyser, Elementar Analysensysteme GmbH). The mineral composition
was analysed with an XRD analyser (Bruker D8 Advance diffractometer).
The semi-quantitative mineral composition was obtained using TOPAS
Rietveld refinement software. Detailed procedures for these analyses are
provided in a previous paper [33].

2.3. Data analysis and calculation

Cluster analysis was performed using SPSS 20 to group the samples based
on similarities and differences. The same program was also used for the
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correlation analysis of parameters, while Microsoft Excel 2013 and Origin
2016 were applied for correlation between a smaller number of elements and
for graphical presentation. Principal component analysis (PCA) was performed
in Minitab 17 to reduce the number of variables necessary to describe the
dataset, to visualise the data structure, and to determine the association of
elements more easily.

Due to the low concentrations of TEs and REEs, an enrichment factor (EF)
is used to follow their distributions. The EF is used to describe the enrichment
of an element in sedimentary rocks (EF ), calculated as the ratio of the
concentration of an element (X) in the analysed sample to its content in certain
‘standard samples’. To minimise the dilution effect of OM and authigenic
minerals, element concentrations are normalised to Al, due to its resistance
to alteration processes. If Al resides within the detrital clay fraction of the
sediments (determined by the correlation of Al with Ti), it is appropriate to use
Al content for normalisation [34, 35]:

EF = (X/Al)

element X

/(X/Al)standard' ( 1 )

Furthermore, solid fossil fuels can be characterised based on the degree of
enrichment with a certain element (Q)) in relation to the concentration of that
element (K17) in argillaceous rocks (the most abundant sedimentary rock type,
including oil shale) [25]:

sample

Q,=C/K,, 2

where C, is the average concentration of the i element in the dry samples.
According to Q, values, caustobiolites (fossil combustible substances)
are classified into five groups: (i) <0.6 =noticeably depleted in TEs;
(i1) 0.6—1.4 = differ little in the amount of TEs; (iii) 1.4-2.0 = enriched
in TEs to a certain extent; (iv) 2.0-3.5 = noticeably enriched in TEs; and
(v) >3.5 = considerably enriched in TEs [25].

3. Results and discussion

3.1. Mineralogy and geochemistry of the investigated samples

3.1.1. Mineral composition

The semi-quantitative mineral composition of samples is presented in
Figure 1. Samples D1-D15 have similar mineral compositions, while sample
D16 notably differs.

Samples D1-D15 show variations in the concentrations of clays, feldspars,
quartz, carbonates, analcime, and natrolite (Fig. 1). The elevated content of
carbonate minerals distinguishes D2 and D13. The highest content of clay
minerals is found in samples D1, D6, D7, D9, and D10. The highest amount
of quartz is observed in samples D2, D5, and D13; it is present in a very low
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Fig. 1. Semi-quantitative mineral composition.

amount (0.48 wt%) in sample D4, while quartz is absent in samples D1, D6,
and D7. The highest content of feldspar minerals characterises samples D3—
D6 and D9. An elevated content of analcime is found in sample D4, followed
by samples D1 and D15. The highest content of natrolite is present in samples
D3-Ds.

The uniqueness of sample D16 is reflected in its significantly higher
content of authigenic carbonate minerals (accounting for 63.87 wt% of the
total mineral matter), the absence of terrigenous detrital minerals (feldspars)
and zeolite minerals (analcime and natrolite), and the presence of the sulphate
mineral bassanite, which is identified only in this sample.

3.1.2. Major elements

The contents of major elements in the analysed samples, together with TOC
and TS, are listed in Table 1.

Among the major elements, SiO,, ALO,, Fe O,, and CaO are the most
abundant, whereas TiO,, MnO, and P O are the least abundant (concentration
<1 wt%; Table 1). SiO, and Al,O, prevail in samples D1-D15, while CaO
dominates in sample D16. This is consistent with the mineral composition
of the analysed samples (Fig. 1). Samples D1-D15 are characterised by
increased content of constituents of clastic minerals SiO,, ALO,, K,O, and
TiO,, followed by Fe O,. AL,O, and SiO, are most abundant in clay minerals
and quartz (Si0,). In contrast, sample D16 is characterised by the prevalence
of CaO, which is in accordance with the dominance of carbonate minerals
(Fig. 1; Table 1). Furthermore, sample D16 has a lower content of all other
major elements. The elevated content of MgO in samples D1-D15 compared
to D16 (Fig. 1; Table 1) can be explained by the presence of dolomite in all

samples except D16 [33].
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Samples D1, D4, D6, D7, and D9 show the highest content of clastic
mineral constituents such as AlO,, SiO,, and TiO, [36-38]. Some of these
samples (D4, D6, D7) have the lowest TOC, probably due to the dilution effect
of OM with clastic material (Table 1). The highest TOC content characterises
sample D16, while samples D2, D10, D12, D13, and D15 also have relatively
high TOC.

On the basis of the major element contents, the same conclusion can be
drawn as from the mineral composition: there was a significant change in the
diagenetic environment after the deposition of the sediments represented by
sample D16, and also certain less pronounced variations during the formation
of the sediments represented by samples D15-D1.

3.1.3. Trace elements

The contents of TEs in the analysed samples are listed in Table 2. Based on
TE contents, sample D16 again differs significantly from samples D1-D15
(Table 2). Sample D16 is characterised by lower concentrations of almost all
analysed TEs, while only Cs, Sr, Cr, and Ni are found in higher concentrations
compared to samples D1-D15 (Table 2).

The obtained result can be attributed to changes in the origin of sedi-
mentary material and/or depositional conditions after the sediment deposition
represented by sample D16 (see Sections 3.1.1 and 3.1.2) [33]. Moreover,
this sample originated from the oil shale layer just above the Main coal seam.
In sedimentological terms, this shift indicates a change in the depositional
environment, since different conditions are necessary for their formation,
probably reflecting a transition from a wetland to a lacustrine environment.

The variations in analysed TE concentrations among samples D1-D15
indicate certain changes in the depositional environment during sediment
formation. Within this group, samples D1, D4, D6, and D7 stand out due to
their elevated concentrations of most analysed TEs. In contrast, samples D2
and D13 are characterised by the lowest TE concentrations. This pattern is
more visible on the dendrogram, which shows that the analysed samples are
divided into two main clusters: D1-D15 (I) and D16 (II; Fig. 2a).

Samples DI1-D15 are further divided into two subclusters. The first
subcluster (Ia) includes samples D3, D5, D8, D10-D12, D14, and D15, as
well as samples D2 and D13, which show slight separation, more pronounced
in sample D13. The second subcluster (Ib) comprises samples D1, D4, D6,
D7, and D9. The results are almost identical whether the cluster analysis is
conducted based only on TE contents (Fig. 2a) or using the contents of major,
trace, and rare earth elements, total organic carbon, and total sulphur (Fig. 2b).
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Fig. 2. Dendrograms of the studied samples derived from cluster analysis: (a) contents
oftrace elements and (b) contents of major, trace, and rare earth elements, total organic
carbon, and total sulphur.

3.1.4. Rare earth elements

The contents of REEs in the analysed samples are listed in Table 3. REEs are
present at lower concentrations in sample D16 compared to samples D1-D15
(Table 3; Fig. 3). Differences among samples D1-D15 can also be observed.
Samples D4, D6, and D7, followed by sample D1, have higher concentrations
of REEs, whereas samples D2, D5, D11, D13, and D14 contain lower amounts.
Furthermore, sample D4 shows elevated concentrations of all REEs except
Yb, which has the highest concentration in sample D1. Since samples D4, D6,
and D7 are characterised by relatively high contents of clastic constituents
(see Sections 3.1.1 and 3.1.2), it can be assumed that the REEs were probably
delivered into the depositional environment with clastic material.

Generally, in the analysed samples, light earth elements (LREEs) are
more abundant than heavy rare earth elements (HREEs; Table 3), which is in
agreement with the typical distribution of REEs in oil shale [20, 37—40]. Based
on PAAS-normalised REEs curves [13], it is also evident that sample D16 is
clearly distinguished, as are samples D4, D6, and D7 (Fig. 3). The samples
show no strong Ce anomalies, whereas several samples display negative Eu
anomalies (D2-D4, D9, D11, D12, D14; Fig. 3).
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Fig. 3. Distribution of rare earth elements.

3.2. Geochemical association of trace and rare earth elements

The organic and inorganic matter of oil shale may host sedimentary accu-
mulations of TEs and REEs. Their correlations with OM (i.e. TOC content)
and the contents of inorganic components were performed for samples D1—
D15, which originated from the same facies.

Regarding the OM, the correlation analysis shows that almost all TEs
and REEs exhibit statistically significant negative correlations with TOC.
A statistically significant positive correlation with TOC is observed for Sr
only (at a significance level p <0.05), whereas Cs, Be, Ba, Zr, Nb, Ta, Cr, W,
Cu, Ga, TI, Sn, and Pb (p <0.01); Rb, Hf, V, and Zn (p <0.05) from TEs; and
La, Ce, Pr, Nd, and Sm (p <0.05) from REEs showed significant negative
correlations with TOC. This leads to the assumption that TEs are not associated
with the OM of the examined sediments.

Statistically significant positive correlations with TOC are observed for
major elements CaO and MgO (p <0.05), as well as for carbonates and quartz
(p <0.01), whereas SiO,, AL, O,, K,O, TiO,, and Fe,O, exhibited negative
correlations (p <0.01). Considering that carbonate minerals have an authigenic
origin, while quartz can have both authigenic and detrital origins, these
correlations could imply that part of the quartz in the investigated samples has
an authigenic origin [41, 42].

This is clearly evident in the loading plot obtained from the PCA (Fig. 4).
The PCA resulted in a two-component model explaining 44.44% of the total
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Fig. 4. Loading plot based on principal component analysis of minerals, major, trace
and rare earth elements, TOC, and TS composition.

variance in the investigated dataset (minerals, major, trace, and rare earth
elements, TOC, TS). The first principal component (PC1) accounted for
32.79% of the overall data variance, whereas the second (PC2) accounted for
11.65%.

Regarding the inorganic part, most of the examined TEs show statistically
significant positive correlations with constituents of clastic minerals (SiO,,
AlO,, K, 0, and TiO,), clastic minerals (clay and feldspar), the zeolite mineral
natrolite, and some TEs with analcime. On the other hand, negative correlations
are observed between TEs and TOC, CaO, MgO, carbonate minerals, and
quartz (Fig. 4). This confirms that TEs were brought into the basin mainly by
clastic material, as expected.

The concentration of REEs shows statistically significant positive
correlations with constituents of clastic minerals (Al,O,, TiO,, SiO,), followed
by P,O,,Fe O,, and Na O, but negative correlations with TOC, CaO and MgO,
carbonate minerals, and quartz. Furthermore, LREEs and HREEs exhibit
some differences in correlations. Namely, LREEs and HREEs show different
significance of positive correlations with Na O: the LREEs demonstrate
a positive correlation with SiO, (p <0.05) and TiO, (p <0.01), whereas the
HREEs display a positive correlation with P,O, (p <0.01) and TiO, (p <0.05;
Fig. 4). Positive correlations of U and Th with P,O, might indicate the presence
of phosphate minerals monazite, xenotime, and apatite, together with heavy
minerals (ilmenite, leucoxene, rutile, zircon) [43]. It is known that these
minerals can be the source of REEs, as well as U and Th [44, 45]. Since XRD
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analysis is not sensitive to less than 5 wt% of the crystalline phase present in
the sample, it can be presumed that this technique did not identify the minerals
mentioned above due to their low content.

3.3. Trace and rare earth elements enrichment

The average trace element concentrations of the analysed oil shales (AOS),
the average World Oil Shales (WOSsp [25], WOSw [21, 22]), Upper Continen-
tal Crust (UCC, [12, 13, 16]), Post-Archaecan Australian Shale (PAAS, [12]),
and argillaceous rocks (K1i, [25]) are presented in Table 4. The enrichment
factor (EF) and the degree of enrichment (Qi) are used to assess elemental
enrichment in sedimentary rocks. The calculated EF and Qi of the analysed
elements in the Aleksinac oil shales are given in Table 4. Furthermore, the
range of element concentrations in oil shale ash from different deposits
in Jordan (JOSa; Attarat Umm Al-Ghudran, El-Lajjun, Sultani, Jurf Al-
Drawaish, Assfar Al-Mahata, Wadi Abu-Hmam, and Al-Shalaleh, [46]) are
also presented in Table 4.

Based on the EF, meaningful enrichment of an element starts from values
>3 [10], while if EF > 1, it can be only considered as a detectable enrich-
ment [47]. In the analysed sample set for TEs, EF >3 is found for Mo (in
relation to WOSsp*, WOSw, UCC, PAAS), Sr (PAAS), and Cu (UCC; Table 4;
Fig. 5). Therefore, it can be said that Mo shows significant enrichment, Sr to
a lesser degree, and Cu to a possible degree.

Among REEs, some elements (Pr, Sm, Eu, Tb, Ho, Tm, Lu) show enrich-
ment with respect to WOSw (Table 4; Fig. 5). The total average concentration
of REEs in AOS is 118.88 ppm, which is lower than in WOSw (216.80 ppm),
[21,22],UCC (146.37 ppm) [12, 13, 16], and PAAS (183 ppm) [12]. The degree

100

10

EF

0.1

W EF(WOSsp*)
EF(WOSw)
B EF(UCC)
W EF(PAAS)
|
‘ﬁ | 4
Rb Cs Be Sr Ba S¢ Zr Hf V Nb Ta Cr Mo W Co Ni Cu Zn Ga Sn Pb Th U Y La Ce Pr Nd Sm Fu Gd Tb Dy Ho Er Tm Yb Lu

Fig. 5. Enrichment factors.
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of'enrichment for the investigated TEs was also determined based on Qi values
(Table 4). Results suggest that the analysed oil shales are noticeably enriched
in Mo and Cs and belong to the fifth group according to the classification
proposed by Shpirt and Punanova [25]. Furthermore, they are enriched to a
certain extent with Cu, U, and Sc, belonging to the third group, while analysed
samples are noticeably depleted in Ba, Zr, Hf, Sn, La, and Yb and belong to
the first group. The remaining TEs are in the second group, which indicates
that the examined oil shales and argillaceous rocks differ slightly in the
concentrations of these TEs.

Comparing the range of concentrations in oil shale ash from different
deposits in Jordan with values in the analysed samples, it is notable that most
elements fall within the range, while the following elements show higher
concentrations in the analysed samples: Be, Sc, Co, Cu, Ce, Pr, Sm, Eu, Gd,
Tb, Dy, and Ho [46].

4. Conclusions

The detailed inorganic geochemical characterisation of the Upper layer of
Aleksinac oil shale in the Dubrava block was performed. The cluster analysis
of major, trace, and rare earth elements, total organic carbon, and total sulphur
showed that the analysed samples are divided into two main clusters, indicating
certain changes in the depositional environment during the formation of these
sediments.

Correlation analysis clearly showed that TEs and REEs are associated with
Si0,, ALO,, K,O, and TiO,, clastic minerals, clay, and feldspar, as well as
zeolite minerals natrolite and analcime, indicating that TEs and REEs were
brought into the basin mainly by clastic material. Taking into account both
the enrichment factors (calculated in relation to World Oil Shales, Upper
Continental Crust, and Post-Archaean Australian Shale) and the degree of
enrichment (concerning argillaceous rocks), it can be concluded that the
Aleksinac oil shale is slightly enriched only in Cu, Cs, Sr, V, Ni, Zn, Pb,
and U, whereas more significant enrichment is observed for Mo exclusively.
The mentioned elements, except Cs, Sr, and Pb, are redox-sensitive, and
therefore their enrichment is in accordance with the OM-richness of the
studied samples.

Compared with ‘standard values’, there is no significant enrichment of
elements potentially toxic to the environment and health in the analysed
sediments, except for Mo and Cu. Therefore, there is a low risk of trace
element pollution if the Aleksinac oil shale were to be further exploited.

Data availability statement
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