ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Comprehensive utilization of oil shale: a minireview; pp. 243–272
PDF | https://doi.org/10.3176/oil.2025.3.01

Authors
Fang Lu ORCID Icon, Chuan Ge ORCID Icon, Yan Zhou ORCID Icon, Gang Han ORCID Icon, Ping Wang, Zhihong Chen ORCID Icon
Abstract

Oil shale, a significant fossil energy source, has garnered global attention due to its huge reserves and potential as an alternative to conventional petroleum. This minireview evaluates the comprehensive utilization of oil shale, focusing on its entire lifecycle, from extraction to energy production, treatment of abandoned mines, and subsequent utilization to gain more economic and environmental benefits. In addition, the minireview underscores the necessity of green and high-value utilization of oil shale and its by-products (i.e., semi-coke and ash) to mitigate environmental pollution. To promote comprehensive utilization of oil shale and its by-products, we summarize current knowledge extending beyond traditional energy applications to encompass construction materials, environmental functional materials, and other high-value products. Strategies such as circulating fluidized bed combustion, in situ conversion, and co-combustion and co-pyrolysis with biomass are introduced for efficient resource use. The treatment of abandoned oil shale mines for energy storage and the recovery of trace and rare earth elements are also addressed. The minireview concludes with recommendations for improving testing strategies, assessing environmental impacts, and exploring new applications to ensure green and sustainable development in the oil shale industry.

References

1. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252. 
https://doi.org/10.3176/oil.2003.3.02  

2. Bsieso, M. S. Jordan’s experience in oil shale studies employing different technologies. Oil Shale, 2003, 20(3S), 360–370. 
https://doi.org/10.3176/oil.2003.3S.09

3. Altun, N. E., Hiçyilmaz, C., Hwang, J.-Y., Bağci, A. S., Kök, M. V. Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. Oil Shale, 2006, 23(3), 211–227. 
https://doi.org/10.3176/oil.2006.3.02

4. Jiang, X., Han, X., Cui, Z. Progress and recent utilization trends in combustion of Chinese oil shale. Prog. Energy Combust. Sci., 2007, 33(6), 552–579. 
https://doi.org/10.1016/j.pecs.2006.06.002

5. Liu, Z., Yang, H., Dong, Q., Zhu, J., Guo, W., Ye, S. et al. Oil Shale in China. Petroleum Industry Press, Beijing, 2009. 

6. Han, X., Kulaots, I., Jiang, X., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143–161. 
https://doi.org/10.1016/j.fuel.2014.02.045

7. Xu, Y., Sun, P., Yao, S., Liu, Z., Tian, X., Li, F. et al. Progress in exploration, development and utilization of oil shale in China. Oil Shale, 2019, 36(2), 285–304. 
https://doi.org/10.3176/oil.2019.2.03

8. Liu, R., Liu, Z., Guo, W., Chen, H. Characteristics and comprehensive utilization potential of oil shale of the Yin’e Basin, Inner Mongolia, China. Oil Shale, 2015, 32(4), 293–312. 
https://doi.org/10.3176/oil.2015.4.02

9. Reinsalu, E., Aarna, I. About technical terms of oil shale and shale oil. Oil Shale, 2015, 32(4), 291–292. 
https://doi.org/10.3176/oil.2015.4.01

10. Lu, F., Zhou, Y., Jia, K., Han, G., Wang, P., Liu, R. Pore types of oil shale in Jilin province, northeastern China. Oil Shale, 2023, 40(1), 62–86. 
https://doi.org/10.3176/oil.2023.1.04

11. Lu, F., Zhou, Y., Wang, P., Jia, K., Han, G. Pore characteristics of oil shales in Jilin province, northeast China: investigations using gas adsorption, mercury intrusion, and NMR cryoporometry. Energy Fuels, 2023, 37(16), 11914–11927. 
https://doi.org/10.1021/acs.energyfuels.3c01127

12. Coal (SAC/TC42). Terms Relating to Oil Shale. NB/T 51032-2015. Emergency Management Press, Beijing, 2015. 
https://hbba.sacinfo.org.cn/stdDetail/7e2912cc7ecfa6224817e04d0701f453# (accessed 2024-09-01).

13. Wang, L., Gao, C., Xiong, R., Zhang, X., Guo, J. Development review and the prospect of oil shale in-situ catalysis conversion technology. Pet. Sci., 2024, 21(2), 1385–1395. 
https://doi.org/10.1016/j.petsci.2023.08.035

14. Ots, A. Oil shale as a power fuel. Oil Shale, 2005, 22(4S), 367–368. 
https://doi.org/10.3176/oil.2005.4S.16

15. Veiderma, M. Estonian oil shale – resources and usage. Oil Shale, 2003, 20(3S), 295–303. 
https://doi.org/10.3176/oil.2003.3S.02

16. Raukas, A., Punning, J.-M. Environmental problems in the Estonian oil shale industry. Energy Environ. Sci., 2009, 2(7), 723–728. 
https://doi.org/10.1039/B819315K

17. Lu, Y., Xu, J., Wang, W., Wang, T., Zong, L., Wang, A. Synthesis of iron red hybrid pigments from oil shale semi-coke waste. Adv. Powder Technol., 2020, 31(6), 2276–2284. 
https://doi.org/10.1016/j.apt.2020.03.020

18. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777. 
https://doi.org/10.1016/j.energy.2006.05.001

19. Alaloul, W. S., Al Salaheen, M., Malkawi, A. B., Alzubi, K., Al-Sabaeei, A. M., Musarat, M. A. Utilizing of oil shale ash as a construction material: a systematic review. Constr. Build. Mater., 2021, 299, 123844. 
https://doi.org/10.1016/j.conbuildmat.2021.123844

20. Gavrilova, O., Vilu, R., Vallner, L. A life cycle environmental impact assessment of oil shale produced and consumed in Estonia. Resour. Conserv. Recycl., 2010, 55(2), 232–245. 
https://doi.org/10.1016/j.resconrec.2010.09.013

21. Väizene, V., Valgma, I., Karu, V., Orru, M. Environmental impact of oil shale mining. Environ. Earth Sci., 2016, 75, 1201. 
https://doi.org/10.1007/s12665-016-5996-4

22. Hilger, J. Oil shale has more than energy – enhance the value by using the minerals in building materials. Oil Shale, 2014, 31(1), 1–3. 
https://doi.org/10.3176/oil.2014.1.01

23. Wang, J., Xu, J., Wang, H., Li, L. Agricultural utilization of Maoming oil shale ash. Oil Shale, 1998, 15(4), 316–328. 
https://doi.org/10.3176/oil.1998.4.02

24. Chen, M., Cheng, Y., Li, W. Exploitation and utilization of oil shale in the coal measure strata of the Haishiwan mine, Yaojie coalfield, China. Oil Shale, 2015, 32(4), 335–355. 
https://doi.org/10.3176/oil.2015.4.04

25. Alaloul, W. S., Al Salaheen, M., Alzubi, K., Musarat, M. A. Utilizing calcined and raw fly oil shale ash in the carbonation process of OPC cement-paste and mortar. Case Stud. Constr. Mater., 2024, 20, e02945. 
https://doi.org/10.1016/j.cscm.2024.e02945

26. Al Salaheen, M., Alaloul, W. S., Alzubi, K. M., Malkawi, A. B., Musarat, M. A. Advancing waste-based construction materials through carbon dioxide curing: a comprehensive review. Results Eng., 2023, 20, 101591. 
https://doi.org/10.1016/j.rineng.2023.101591

27. Kang, Z., Zhao, Y., Yang, D. Review of oil shale in-situ conversion technology. Appl. Energy, 2020, 269, 115121. 
https://doi.org/10.1016/j.apenergy.2020.115121

28. Sun, Y., Guo, W., Li, Q., Bai, F., Deng, S. Current status and prospects of oil shale in-situ conversion technology in China. Pet. Sci. Bull., 2023, 8(4), 475–490. 
https://doi.org/10.3969/j.issn.2096-1693.2023.04.036

29. Han, X., Li, Q., Niu, M., Huang, Y., Jiang, X. Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 1. System and key issues. Oil Shale, 2014, 31(1), 42–53. 
https://doi.org/10.3176/oil.2014.1.05

30. Nešumajev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale, 2019, 36(2S), 99–113. 
https://doi.org/10.3176/oil.2019.2S.02

31. Tamm, K., Kallaste, P., Uibu, M., Kallas, J., Velts-Jänes, O., Kuusik, R. Leaching thermodynamics and kinetics of oil shale waste key components. Oil Shale, 2016, 33(1), 80–99. 
https://doi.org/10.3176/oil.2016.1.07

32. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva thermal power plants, Estonia. Oil Shale, 2010, 27(4), 339–353. 
https://doi.org/10.3176/oil.2010.4.07

33. Hotta, A., Parkkonen, R., Hiltunen, M., Arro, H., Loosaar, J., Parve, T. et al. Experience of Estonian oil shale combustion based on CFB technology at Narva Power Plants. Oil Shale, 2005, 22(4S), 381–397. 
https://doi.org/10.3176/oil.2005.4S.02

34. Blinova, I., Bityukova, L., Kasemets, K., Ivask, A., Käkinen, A., Kurvet, I. et al. Environmental hazard of oil shale combustion fly ash. J. Hazard. Mater., 2012, 229–230, 192–200. 
https://doi.org/10.1016/j.jhazmat.2012.05.095

35. Chen, B., Li, Y., Yuan, M., Shen, J., Wang, S., Tong, J. et al. Study of the co-pyrolysis characteristics of oil shale with wheat straw based on the hierarchical collection. Energy, 2022, 239(B), 122144. 
https://doi.org/10.1016/j.energy.2021.122144

36. Liu, H., Liang, W., Wu, M., Wang, Q. Co-combustion of oil shale retorting solid waste with cornstalk particles in a circulating fluidized bed. Energy Fuels, 2015, 29(10), 6832–6838. 
https://doi.org/10.1021/acs.energyfuels.5b01804

37. Konist, A., Pihu, T., Neshumayev, D., Külaots, I. Low grade fuel-oil shale and biomass co-combustion in CFB boiler. Oil Shale, 2013, 30(2S), 294–304. 
https://doi.org/10.3176/oil.2013.2S.09

38. Pihu, T., Konist, A., Neshumayev, D., Loo, L., Molodtsov, A., Valtsev, A. Full-scale tests on the co-firing of peat and oil shale in an oil shale fired circulating fluidized bed boiler. Oil Shale, 2017, 34(3), 250–262. 
https://doi.org/10.3176/oil.2017.3.04

39. Wang, Q., Wang, X., Liu, H., Jia, C. Study of the combustion mechanism of oil shale semi-coke with rice straw based on Gaussian multi-peak fitting and peak-to-peak methods. Oil Shale, 2013, 30(2), 157–172. 
https://doi.org/10.3176/oil.2013.2.06

40. Torres, M., Portugau, P., Castiglioni, J., Cuña, A., Yermán, L. Co-combustion behaviours of a low calorific Uruguayan Oil Shale with biomass wastes. Fuel, 2020, 266, 117118. 
https://doi.org/10.1016/j.fuel.2020.117118

41. Fan, Y., Yu, Z., Fang, S., Lin, Y., Lin, Y., Liao, Y. et al. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis. Energy Convers. Manag., 2016, 117, 367–374. 
https://doi.org/10.1016/j.enconman.2016.03.045

42. Cui, S., Yang, T., Zhai, Y., Zhu, Y., Yu, Z., Kai, X. Investigation on the charac-teristics and interaction of co-pyrolysis of oil shale and peanut shell. Fuel, 2023, 340, 127502. 
https://doi.org/10.1016/j.fuel.2023.127502

43. Eesti Energia, Viru Keemia Grupp, Kiviõli Keemiatööstus, Oil Shale Competence Centre at the TalTech’s Virumaa College. Estonian Oil Shale Industry Year-book 2018. Kohtla-Järve, 2019. 
https://www.connaissancedesenergies.org/sites/connaissancedesenergies.org/files/pdf-actualites/Estonian%20Oil%20Shale%20Industry%20Yearbook%202018.pdf (accessed 2024-10-01).

44. Chen, B., Cai, J., Chen, X., Wu, D., Pan, Y. A review on oil shale in-situ mining technologies: opportunities and challenges. Oil Shale, 2024, 41(1), 1–25. 
http://dx.doi.org/10.3176/oil.2024.1.01

45. Liu, S., Gai, H., Cheng, P. Technical scheme and application prospects of oil shale in situ conversion: a review of current status. Energies, 2023, 16(11), 4386. 
https://doi.org/10.3390/en16114386

46. Zhao, D., Zhang, Q., Ren, C., Zhang, Z., Zhang, J., Hu, F. et al. A bibliometric comparative study on global oil shale research: hotspots, trends and regional focus. Oil Shale, 2023, 40(1), 1–24. 
https://doi.org/10.3176/oil.2023.1.01

47. Kang, Z., Xie, H., Zhao, Y., Zhao, J. The feasibility of in-situ steam injection technology for oil shale underground retorting. Oil Shale, 2020, 37(2), 119–138. 
https://doi.org/10.3176/oil.2020.2.03

48. Shi, Y., Zhang, Y., Song, X., Cui, Q., Lei, Z., Song, G. Injection energy utilization efficiency and production performance of oil shale in-situ exploitation. Energy, 2023, 263(B), 125714. 
https://doi.org/10.1016/j.energy.2022.125714

49. Saia, A., Neshumayev, D., Hazak, A., Sander, P., Järvik, O., Konist, A. Techno-economic assessment of CO2capture possibilities for oil shale power plants. Renew. Sustain. Energy Rev., 2022, 169, 112938. 
https://doi.org/10.1016/j.rser.2022.112938

50. Reinsalu, E., Valgma, I. Geotechnical processes in closed oil shale mines. Oil Shale, 2003, 20(3S), 398–403. 
https://doi.org/10.3176/oil.2003.3S.14

51. Xie, H., Zhao, J., Zhou, H., Ren, S., Zhang, R. Secondary utilizations and perspectives of mined underground space. Tunn. Undergr. Space Technol., 2020, 96, 103129. 
https://doi.org/10.1016/j.tust.2019.103129

52. Liu, H., Wu, Q., Chen, J., Wang, M., Zhao, D., Duan, C. Environmental impacts related to closed mines in Inner Mongolia. Sustainability, 2021, 13(23), 13473. 
https://doi.org/10.3390/su132313473

53. Zhao, D., Zhang, W., Xie, W., Liu, C., Yang, Y., Chen, Y. et al. Ecological restoration and transformation of Maoming oil shale mining area: experience and inspirations. Land, 2023, 12(2), 318. 
https://doi.org/10.3390/land12020318

54. Gray, M., Jarman, D. Creating authentic ‘glacial’ landforms from waste materials: two UK case studies. Scott. Geogr. J., 2003, 119(4), 311–324. 
https://doi.org/10.1080/00369220318737181

55. Eesti Energia. 2024. Eesti Energia Annual Report 2023
https://public-docs.enefit.ee/ettevottest/investorile/2023/2023-annual-report-ENG.pdf (accessed 2024-10-01).

56. Vazquez, S., Lukic, S. M., Galvan, E., Franquelo, L. G., Carrasco, J. M. Energy storage systems for transport and grid applications. IEEE Trans. Ind. Electron., 2010, 57(12), 3881–3895. 
https://doi.org/10.1109/TIE.2010.2076414

57. Aneke, M., Wang, M. Energy storage technologies and real life applications – a state of the art review. Appl. Energy, 2016, 179, 350–377. 
https://doi.org/10.1016/j.apenergy.2016.06.097

58. Nadeem, F., Hussain, S. M. S., Tiwari, P. K., Goswami, A. K., Ustun, T. S. Comparative review of energy storage systems, their roles, and impacts on future power systems. IEEE Access, 2019, 7, 4555–4585. 
https://doi.org/10.1109/ACCESS.2018.2888497

59. Sabihuddin, S., Kiprakis, A. E., Mueller, M. A numerical and graphical review of energy storage technologies. Energies, 2015, 8(1), 172–216. 
https://doi.org/10.3390/en8010172

60. Galetakis, M., Biotakis, G., Deligiorgis, V., Varouchakis, E. Transforming decommissioned mines to a gravity energy storage system. Mater. Proc., 2023, 15(1), 14. 
https://doi.org/10.3390/materproc2023015014  

61. Chen, Q., Hou, Z., Wu, X., Zhang, S., Sun, W., Fang, Y. et al. A two-step site selection concept for underground pumped hydroelectric energy storage and potential estimation of coal mines in Henan Province. Energies, 2023, 16(12), 4811. 
https://doi.org/10.3390/en16124811

62. Yang, Q., Liu, Q., Fu, Q., Yang, K., Zhang, M., Chen, Q. Smart microgrid construction in abandoned mines based on gravity energy storage. Heliyon, 2023, 9(11), e21481. 
https://doi.org/10.1016/j.heliyon.2023.e21481

63. Enefit. Eesti Energia received support from the state for the development of pumped-storage hydroelectric power plant. 
https://www.enefit.ee/en/uudised/avaleht/-/newsv2/2022/10/28/eesti-energia-sai-riigilt-toetuse-vesisalvesti-arendamiseks (accessed 2024-08-24).

64. Gbadamosi, A. O., Muhammed, N. S., Patil, S., Al Shehri, D., Haq, B., Epelle, E. I. et al. Underground hydrogen storage: a critical assessment of fluid-fluid and fluid-rock interactions. J. Energy Storage, 2023, 72(C), 108473. 
https://doi.org/10.1016/j.est.2023.108473

65. Raza, A., Glatz, G., Alafnan, S., Mahmoud, M., Gholami, R. Depleted shale gas formations as naturally-occurring storage compartments for hydrogen: a molecular-level assessment. Fuel, 2023, 334(1), 126695. 
https://doi.org/10.1016/j.fuel.2022.126695

66. Alafnan, S., Raza, A., Mahmoud, M. Assessment of hydrogen geo-storage capacity in depleted shale formations: multiphysics storage mechanisms and the impact of residual gas in place. Fuel, 2024, 364, 131073. 
https://doi.org/10.1016/j.fuel.2024.131073

67. Samara, H., Von Ostrowski, T., Jaeger, P. Geological storage of carbon dioxide and hydrogen in Jordanian shale formations. In SPE Annual Technical Conference and Exhibition, Houston, Texas, USA, 3–5 October 2022
https://doi.org/10.2118/210202-MS

68. Karu, V., Valgma, I., Kolats, M. Mine water as a potential source of energy from underground mined areas in Estonian oil shale deposit. Oil Shale, 2013, 30(2S), 336–362. 
https://doi.org/10.3176/oil.2013.2S.12

69. Chudy, K. Mine water as geothermal resource in Nowa Ruda Region (SW Poland). Water, 2022, 14(2), 136. 
https://doi.org/10.3390/w14020136

70. Woźniak, J., Pactwa, K. Possibilities for using mine waters in the context of the construction of heat energy clusters in Poland. Energy Sustain. Soc., 2019, 9, 13. 
https://doi.org/10.1186/s13705-019-0195-2

71. Watzlaf, G. R., Ackman, T. E. Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ., 2006, 25, 1–14. 
https://doi.org/10.1007/s10230-006-0103-9

72. He, C., Zhang, T., Vidic, R. D. Use of abandoned mine drainage for the development of unconventional gas resources. Disruptive Sci. Technol., 2013, 1(4), 169–176. 
https://doi.org/10.1089/dst.2013.0014

73. He, C., Zhang, T., Vidic, R. D. Co-treatment of abandoned mine drainage and Marcellus Shale flowback water for use in hydraulic fracturing. Water Res., 2016, 104, 425–431. 
https://doi.org/10.1016/j.watres.2016.08.030

74. Voolma, M., Soesoo, A., Hade, S., Hints, R., Kallaste, T. Geochemical hetero-geneity of Estonian graptolite argillite. Oil Shale, 2013, 30(3), 377–401. 
https://doi.org/10.3176/oil.2013.3.02

75. Hade, S., Soesoo, A. Estonian graptolite argillites revisited: a future resource? Oil Shale, 2014, 31(1), 4–18. 
https://doi.org/10.3176/oil.2014.1.02

76. Soesoo, A. More out from oil shale? Oil Shale, 2014, 31(3), 207–210. 
https://doi.org/10.3176/oil.2014.3.01

77. Soesoo, A., Vind, J., Hade, S. Uranium and thorium resources of Estonia. Minerals, 2020, 10(9), 798. 
https://doi.org/10.3390/min10090798

78. Wang, Q., Bai, J., Ge, J., Wei, Y., Li, S. Geochemistry of rare earth and other trace elements in Chinese oil shale. Oil Shale, 2014, 31(3), 266–277. 
https://doi.org/10.3176/oil.2014.3.06

79. Braithwaite, E. R., Haber, J. (eds). 2013. Molybdenum: An Outline of Its Chemistry and Uses. Elsevier, Amsterdam.

80. Peluzo, B. M. T. C., Kraka, E. Uranium: the nuclear fuel cycle and beyond. Int. J. Mol. Sci., 2022, 23(9), 4655. 
https://doi.org/10.3390/ijms23094655

81. Jiménez-Ballesta, R., Higueras, P. L., García Navarro, F. J. 2024. Rare earths in soils. In Frontier Studies in Soil Science (Núñez-Delgado, A., ed.). Springer, Cham, 43–77. 
https://doi.org/10.1007/978-3-031-50503-4_3

82. Yang, H., Wang, W., Zhang, D., Deng, Y., Cui, H., Chen, J. et al. Recovery of trace rare earths from high-level Fe3+and Al3+ waste of oil shale ash (Fe−Al−OSA). Ind. Eng. Chem. Res., 2010, 49(22), 11645–11651. 
https://doi.org/10.1021/ie101115e

83. Al-Ayed, O. S., Qawaqneh, M. K., Abu-Nameh, E. S. M. Tracing rare earth elements in oil shale ash. Oil Shale, 2024, 41(2), 132–143. 
https://doi.org/10.3176/oil.2024.2.04

84. Öpik, I. Ash utilization after combustion and thermal processing of Estonian (kukersite) oil shale. Oil Shale, 1989, 6(3), 270–275. 
https://doi.org/10.3176/oil.1989.3.07

85. Wei, H., Zhang, Y., Cui, J., Han, L., Li, Z. Engineering and environmental evaluation of silty clay modified by waste fly ash and oil shale ash as a road subgrade material. Constr. Build. Mater., 2019, 196, 204–213. 
https://doi.org/10.1016/j.conbuildmat.2018.11.060

86. Goncharov, A., Zhutovsky, S. Eco-friendly belite cement from crude calcareous oil shale with low calorific value. Cem. Concr. Res., 2022, 159, 106874. 
https://doi.org/10.1016/j.cemconres.2022.106874

87. Taulbee, D. N., Graham, U. M., Carter, S. D., Robl, T. L., Derbyshire, F. Examination of eastern US oil shale by-products and their markets. Fuel, 1995, 74(8), 1118–1124. 
https://doi.org/10.1016/0016-2361(95)00072-D

88. Russell, P. L. World history and resources of oil shale. Energy Explor. Exploit., 1986, 4(4), 301–320. 
https://doi.org/10.1177/014459878600400404

89. Thiéry, V., Bourdot, A., Bulteel, D. Characterization of raw and burnt oil shale from Dotternhausen: petrographical and mineralogical evolution with temperature. Mater. Charact., 2015, 106, 442–451. 
https://doi.org/10.1016/j.matchar.2015.06.022

90. Brendow, K. Global oil shale issues and perspectives synthesis of the symposium on oil shale held in Tallinn (Estonia) on 18 and 19 November 2002. Oil Shale, 2003, 20(1), 81–92. 
https://doi.org/10.3176/oil.2003.1.09

91. Al-Otoom, A. Y. Utilization of oil shale in the production of Portland clinker. Cem. Concr. Compos., 2006, 28(1), 3–11. 
https://doi.org/10.1016/j.cemconcomp.2005.06.006

92. Paaver, P., Paiste, P., Liira, M., Kirsimäe, K. Mechanical activation of the Ca-rich circulating fluidized bed combustion fly ash: development of an alternative binder system. Minerals, 2021, 11(1), 3. 
https://doi.org/10.3390/min11010003

93. Hadi, N. A. R. A., Abdelhadi, M. Characterization and utilization of oil shale ash mixed with granitic and marble wastes to produce lightweight bricks. Oil Shale, 2018, 35(1), 56–69. 
https://doi.org/10.3176/oil.2018.1.04

94. Joosep, R. 2015. Moisture and thermal conductivity of lightweight block walls. In IOP Conference Series: Materials Science and Engineering, 96. IOP Publishing, 012033. 
https://doi.org/10.1088/1757-899X/96/1/012033

95. Viru Keemia Grupp. Viru Keemia Grupp Yearbook 2015
https://www.vkg.ee/aastaraamat2015/index-en.html#production-of-construction-materials (accessed 2024-10-01).

96. Guo, W., Guo, X., Chen, X., Li, Y., Li, Z., An, Y. et al. Laboratory evaluation of the permeability durability of utilization of oil shale waste as fine aggregate in open grade friction course in seasonal frozen regions. Appl. Sci., 2020, 10(1), 419. 
https://doi.org/10.3390/app10010419

97. Reinik, J., Irha, N., Koroljova, A., Meriste, T. Use of oil shale ash in road construction: results of follow-up environmental monitoring. Environ. Monit. Assess., 2018, 190, 59. 
https://doi.org/10.1007/s10661-017-6421-5

98. Smadi, M. M., Haddad, R. H. The use of oil shale ash in Portland cement concrete. Cem. Concr. Compos., 2003, 25(1), 43–50. 
https://doi.org/10.1016/S0958-9465(01)00054-3

99. Bayaidah, R. H., Habashneh, A. A. O., Al-Ma’aitah, S. H., Alfahajin, M. S., Al-Kheetan, M. J., Jweihan, Y. S. et al. Utilisation of raw oil shale as fine aggregate to replace natural sand in concrete: microstructure, surface chemistry and macro properties. Results Eng., 2023, 19, 101265. 
https://doi.org/10.1016/j.rineng.2023.101265

100. Liiv, J., Teppand, T., Rikmann, E., Tenno, T. Novel ecosustainable peat and oil shale ash-based 3D-printable composite material. Sustain. Mater. Technol., 2018, 17, e00067. 
https://doi.org/10.1016/j.susmat.2018.e00067

101. Sinka, M., Sapata, A., Spurin, E., Puzule, L., Sahmenko, G., Bajare, D. 2024. Proportioning of oil shale ash for sustainable 3D printable mortars. In CONECT. International Scientific Conference of Environmental and Climate Technologies, 47. 
https://doi.org/10.7250/CONECT.2024.030

102. Väli, E., Valgma, I., Reinsalu, E. Usage of Estonian oil shale. Oil Shale, 2008, 25(2S), 101–114. 
https://doi.org/10.3176/oil.2008.2S.02

103. Tohver, T. Utilization of waste rock from oil shale mining. Oil Shale, 2010, 27(4), 321–330. 
https://doi.org/10.3176/oil.2010.4.05

104. Zhao, F., Zhang, Y., Zhang, X., Zhao, L., Fu, F., Mu, B. et al. Preparation of efficient adsorbent with dual adsorption function based on semi-coke: adsorption properties and mechanisms. J. Colloid Interface Sci., 2022, 626, 674–686. 
https://doi.org/10.1016/j.jcis.2022.06.100

105. Zhao, F., Mu, B., Kang, Y., Wang, D., Zhu, G., Wang, A. Hydrothermal-assisted acid-etching of oil shale semi-coke for preparation of mineral/biochar nanocomposites and selective adsorption toward mycotoxins. J. Environ. Chem. Eng., 2024, 12(4), 113259. 
https://doi.org/10.1016/j.jece.2024.113259

106. Shawabkeh, R., Al-Harahsheh, A., Hami, M., Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel, 2004, 83(7–8), 981–985. 
https://doi.org/10.1016/j.fuel.2003.10.009

107. Shawabkeh, R. Equilibrium study and kinetics of Cu2+ removal from water by zeolite prepared from oil shale ash. Process Saf. Environ. Prot., 2009, 87(4), 261–266. 
https://doi.org/10.1016/j.psep.2009.04.001

108. Zhang, H., Wang, J., Zhang, B., Liu, Q., Li, S., Yan, H. et al. Synthesis of a hydrotalcite-like compound from oil shale ash and its application in uranium removal. Colloids Surf. A: Physicochem. Eng. Asp., 2014, 444, 129–137. 
https://doi.org/10.1016/j.colsurfa.2013.12.054

109. Sun, T., Liu, L., Wang, L., Zhang, Y. Preparation of a novel inorganic polymer coagulant from oil shale ash. J. Hazard. Mater., 2011, 185(2–3), 1264–1272. 
https://doi.org/10.1016/j.jhazmat.2010.10.041

110. Reinik, J., Heinmaa, I., Kirso, U., Kallaste, T., Ritamäki, J., Boström, D. et al. Alkaline modified oil shale fly ash: optimal synthesis conditions and preliminary tests on CO2 adsorption. J. Hazard. Mater., 2011, 196, 180–186. 
https://doi.org/10.1016/j.jhazmat.2011.09.006

111. Aslam, Z. Carbonaceous adsorbent from waste oil fly ash: surface treatments and hydrogen sulfide adsorption potential. Chem. Pap., 2022, 76, 5145–5158. 
https://doi.org/10.1007/s11696-022-02182-4

112. Shawabkeh, R., Al-Harahsheh, A. H2S removal from sour liquefied petroleum gas using Jordanian oil shale ash. Oil Shale, 2007, 24(2), 109–116. 
https://doi.org/10.3176/oil.2007.2.02

113. Shawabkeh, R. A. Synthesis and characterization of activated carbo-alumino-silicate material from oil shale. Microporous Mesoporous Mater., 2004, 75(1–2), 107–114. 
https://doi.org/10.1016/j.micromeso.2004.07.020

114. Hamdan, M. A., Sublaban, E. T., Asfar, J. J. A., Banisaid, M. A. Wastewater treatment using activated carbon produced from oil shale. J. Ecol. Eng., 2023, 24(2), 131–139. 
https://doi.org/10.12911/22998993/156664

115. Mangrich, A., Tessaro, L., Dos Anjos, A., Wypych, F., Soares, J. A slow-release K+ fertilizer from residues of the Brazilian oil-shale industry: synthesis of kalsilite-type structures. Environ. Geol., 2001, 40, 1030–1036. 
https://doi.org/10.1007/s002540100296

116. Reinik, J., Irha, N., Ots, K. Effect of Ca-rich granulated oil shale ash amendment on leaching properties of peat soil: experimental and field study. Eurasian Soil Sci., 2021, 54, 1097–1106. 
https://doi.org/10.1134/S1064229321070115

117. Liu, Y., Zhu, Y., Wang, Y., Wang, X., Zong, L., Wang, A. Semi-coke-enhanced eco-friendly superabsorbent composites for agricultural application. Polym. Bull., 2023, 80, 569–588. 
https://doi.org/10.1007/s00289-022-04099-0

118. Pei, S., Han, F., Xu, Z., Liu, J., Huang, J. Feasibility study on application of organic matter in oil shale in ecological restoration in Xinjiang. China Energy Environ. Prot., 2023, 45(9), 179–186. 
https://doi.org/10.19389/j.cnki.1003-0506.2023.09.028

119. Kaljuvee, T., Uibu, M., Yörük, C. R., Einard, M., Trikkel, A., Kuusik, R. et al. Study of thermooxidation of oil shale samples and basics of processes for utilization of oil shale ashes. Minerals, 2021, 11(2), 193. 
https://doi.org/10.3390/min11020193

120. Ots, K., Tilk, M., Aguraijuja, K. The effect of oil shale ash and mixtures of wood ash and oil shale ash on the above- and belowground biomass formation of Silver birch and Scots pine seedlings on a cutaway peatland. Ecol. Eng., 2017, 108(A), 296–306. 
https://doi.org/10.1016/j.ecoleng.2017.09.002

121. An, B., Wang, W., Ji, G., Gan, S., Gao, G., Xu, J. et al. Preparation of nano-sized α-Al2O3 from oil shale ash. Energy, 2010, 35(1), 45–49. 
https://doi.org/10.1016/j.energy.2009.08.027

122. Xu, Y., He, D., Shi, J., Guan, J., Zhang, Q. Preparation of alumina from retorting residue of oil shale. Oil Shale, 2012, 29(1), 36–51. 
https://doi.org/10.3176/oil.2012.1.04

123. Li, G., Wang, W., Long, T., Tian, Z., Cao, Z., Yang, J. et al. A general and facile method to prepare uniform gamma-alumina hollow microspheres from waste oil shale ash. Mater. Lett., 2014, 133, 143–146. 
https://doi.org/10.1016/j.matlet.2014.07.005

124. Qian, T., Li, J., Ma, H., Yang, J. The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol–gel method. Sol. Energy Mater. Sol. Cells, 2015, 132, 29–39. 
https://doi.org/10.1016/j.solmat.2014.08.017

125. Gao, G., Zou, H., Gan, S., Liu, Z., An, B., Xu, J. et al. Preparation and properties of silica nanoparticles from oil shale ash. Powder Technol., 2009, 191(1–2), 47–51. 
https://doi.org/10.1016/j.powtec.2008.09.006

126. Gao, G., Liu, D., Zou, H., Zou, L., Gan, S. Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol., 2010, 197(3), 283–287. 
https://doi.org/10.1016/j.powtec.2009.10.005

127. Bao, W., Guo, F., Zou, H., Gan, S., Xu, X., Zheng, K. Synthesis of hydrophobic alumina aerogel with surface modification from oil shale ash. Powder Technol., 2013, 249, 220–224. 
https://doi.org/10.1016/j.powtec.2013.08.001

128. Miao, W., Hu, Y., Liu, J., Wang, X., Liu, Z., Peng, H. et al. Silica hard template extracted from semicoke residue toward the hierarchical porous carbon skeleton for lithium–sulfur batteries. ACS Appl. Nano Mater., 2024, 7(15), 17493–17503. 
https://doi.org/10.1021/acsanm.4c02595

Back to Issue