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Abstract .   Oil shale, a significant fossil energy source, has garnered global 
attention  due to its huge reserves and potential as an alternative to conventional 
petroleum. This minireview evaluates the comprehensive utilization of oil shale, 
 focusing on its entire lifecycle, from extraction to energy production, treatment 
of abandoned mines,  and   subsequent    utilization to gain more economic and 
environmental benefits. In addition,  the minireview underscores the necessity 
of green and high-value utilization of oil shale and its by-products (i.e., semi-
coke and ash) to mitigate environmental pollution. To promote comprehensive 
utilization of oil shale and its by-products, we  summarize current knowledge 
extending beyond traditional energy applications to encompass construction 
materials, environmental functional materials, and other high-value products. 
Strategies such as circulating fluidized bed combustion, in situ conversion, 
and co-combustion and co-pyrolysis with biomass are introduced for efficient 
resource use. The treatment of abandoned oil shale mines for energy storage 
and the recovery of trace and rare earth elements are also addressed. The 
minireview concludes with recommendations  for  improving testing strategies, 
 assessing environmental impacts, and exploring new applications to ensure 
green and sustainable development in the oil shale industry.
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1. Introduction

Petroleum, as a critical raw material and energy source, is in high demand 
across various industries, including chemical, agricultural, transportation, and 
other sectors. With the increasing global demand for petroleum, many countries 
are exploring alternative fossil energy sources beyond conventional oil and 
gas reservoirs, such as clastic and carbonate rocks.  Among these alternatives, 
oil shale (OS) has emerged as a significant potential substitute due to its vast 
reserves, widespread distribution, and relatively easy extraction. Countries 
such as Australia, Brazil, China, Estonia, Jordan, Russia, Turkey, and the USA 
have recognized the potential of OS as a crucial resource for future energy 
needs [1–7].

OS is a solid, combustible organic sedimentary rock with high ash content. 
Its industrial standards vary by country, depending on local economic and 
technological conditions. For instance, in China, OS is considered industrially 
viable if it has an oil yield greater than 3.5% and a calorific value exceeding 
4.18 MJ/kg (~1000 kcal/kg) [1, 4, 7–9]. The primary components of OS are 
minerals, organic matter (mainly kerogen with small amounts of bitumen), and 
water [3, 5, 6, 10, 11]. Kerogen, due to its macromolecular structure, cannot 
be extracted using common solvents but can be converted into hydrocarbons 
through heating [6]. The network structure of the kerogen is broken down by 
 low-temperature (450–600 °C)  retorting (pyrolysis or distillation) without air 
contact to produce shale oil, gas, water, and a solid residue known as semi-
coke (SC) (Fig. 1) [5, 6, 12]. SC is a mixture of carbonaceous residues and 
minerals, and it is a by-product of the retorting process (Fig. 1) [5, 6, 12, 13]. 
In addition, OS and SC can generate electricity through combustion – 
especially OS, which is used in large quantities at OS-fired power plants –, 
leaving behind another by-product mainly consisting of  inorganic materials 
known as oil shale ash (OSA ) (Fig. 1) [5, 12, 14, 15]. 

In the process of OS retorting or combustion, large amounts of SC and OSA  
are yielded [6, 16–19]. OS, SC, and OSA often contain toxic substances, includ  - 
ing organic compounds (e.g.,  polycyclic aromatic hydrocarbons (PAHs) and 
water-soluble phenols (WSP)), S, and heavy metals (e.g., As, Cd, Co, and V) 
[4, 6, 16–18, 20]. The massive accumulation of tailings and by-products of 
OS not only occupies considerable valuable land resources but also leads to 
spontaneous combustion due to long-term weathering and  oxidation  in open 
space,  which   may cause  land disruption, geological hazards, and workplace 
accidents [16, 19, 20]. In addition, SC and OSA   may cause air, soil, and water 
 pollution as wind, rain, and groundwater transport pollutants from dumping 
sites to other areas, resulting in serious environmental problems and risks 
to human health [6, 16–18, 20, 21]. Therefore, the green and high-value 
utilization of OS and its by-products (i.e., SC and OSA) has become an urgent 
issue that needs to be addressed.
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Although factors such as low calorific value and high ash content have 
limited the rapid development of the OS industry in the global energy sector, 
OS  provides more than just energy [22].  OS and its by-products also serve as 
valuable material resources. OS is relatively rich in Ca, Al, Si, trace elements, 
rare earth elements (REEs), and  organic carbon. SC and OSA, in particular, 
tend to concentrate these elements due to their lower carbon content after 
retorting or combustion [6]. These materials have been utilized in various 
fields, including construction, environmental protection, agriculture, and the 
chemical industry [22–24]. 

The   OS waste rock, SC, and OSA  cannot simply be piled up as solid  waste. 
  Underutilization not only wastes resources and land but also  results in adverse 
social, economic, and environmental impacts. Comprehensive utilization 
of OS transforms waste into value, significantly reducing solid waste,  land 
use, and carbon emissions while helping to achieve carbon neutrality in the 
OS industry. For example, using SC and OSA as raw materials in cement 
production can substantially reduce greenhouse gas emissions compared to 
traditional cement manufacturing processes [19, 25, 26]. Additionally, com
pre  hensive utilization of OS  resources (including SC and OSA) can increase 
development benefits, especially by balancing the develop ment costs of OS 
in the event of lower oil prices. To achieve these goals, it is crucial to adopt 
innovative technologies and sustainable practices that align with the principles 
of zero waste and green ecological development.
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In recent years, there has been growing interest in exploring optimal ways 
to comprehensively utilize OS and its by-products.   Advances in materials 
science and the development of unconventional energy resources, such as 
shale gas and coalbed methane, have provided valuable insights into the 
potential applications of OS resources.  This minireview focuses on the entire 
lifecycle of the OS industry, from extraction and energy production to the 
treatment of abandoned mines and the subsequent utilization of by-products. 
It also provides recommendations for future research and development to 
ensure the sustainable and responsible use of OS resources.

2. Raw oil shale for energy

Due to the  complex chemical characteristics of kerogen, OS can be converted 
into shale oil and gas only through retorting (Fig. 1) [27]. OS retorting 
technology are generally  divided into two main categories based on the 
location of the retorting process relative to the OS reservoir: above-ground (ex 
situ) retorting and in situ conversion [13, 27, 28]. In addition to its common 
use for producing shale oil and gas, raw OS can also be combusted to generate 
electricity (Fig. 1). In some cases, OS power plants are integrated with above-
ground retorting facilities. 

 2.1. Above-ground retorting and power generation

 2.1.1. Above-ground retorting technologies

Above-ground retorting has become the most commonly used method in the 
OS industry due to its low cost, long history, and mature technology [6, 13, 28]. 
Almost all shale oil and gas  produced globally today come from this category 
of technology. The above-ground retorting process typically includes mining 
(i.e., open-pit and underground methods), grinding, sieving, drying, heating, 
and ultimately producing shale oil and gas [13, 27]. Although this technology 
is suitable for large-scale mining development, it requires a large land area for 
operation and  can only exploit shallow OS resources [13, 27, 28]. Therefore, 
above-ground retorting is unsuitable for   deeply buried underground resources, 
especially those located  beneath farmland and wetlands, such as in the southern 
Songliao Basin in Northeast China.

 The  most well-known above-ground retorting technologies are  AOSTRA 
Taciuk  Processing (ATP, Australia),  Petrosix (Brazil), Fushun (China), Kiviter 
(Estonia), and Galoter (Estonia) types [5, 6, 27, 29].   Among these, two primary 
retorting methods are widely used: the solid heat carrier (SHC) and gaseous 
heat carrier  (GHC) methods [6, 30, 31]. The SHC retorting method, such as the 
Galoter process and its derivatives (e.g., Petroter, Enefit-140, and Enefit-280), 
involves the use of solid materials (typically OSA) as heat carriers to transfer 
heat to the OS during  retorting [6, 30]. The GHC retorting method, on the other 
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hand, uses hot gases as heat carriers, which can be more complex in terms of heat 
transfer and control [6, 30].

To improve the efficiency of OS utilization, enhance shale oil and gas 
yield, and reduce the production of SC, above-ground retorting technologies 
are being integrated with advanced, proven  technologies such as circulating 
fluidized bed (CFB) and SHC [6, 30]. The SHC process, particularly when 
integrated with CFB technology, allows for more efficient heat transfer and 
better control over the retorting process, leading to higher oil yields and 
reduced environmental impact [6, 30]. For instance, the Enefit-280 technology, 
a modern iteration of the Galoter process, utilizes CFB to prepare SHC for the 
retorting stage, significantly improving shale oil production efficiency and 
reducing emissions [30].

2.1.2. Power generation from OS and SC

OS has a long history of being used for electricity generation, similar to coal, 
with ash as the primary by-product [14, 15]. The thermal energy of the steam 
produced by OS combustion is converted into mechanical energy, which 
drives a generator to produce electricity [20]. CFB and pulverized firing (PF) 
are commonly used OS combustion technologies for power generation [31–
34]. In recent decades, CFB technology has been replacing PF technology 
due to its superior economic and environmental performance [16, 32–34]. 
In addition to OS, fuels for power generation include SC and retorting gas 
produced during the retorting process (Fig. 1) [24].

Since the organic compounds remaining in SC have potential combustion 
heat, SC can be used as a fuel for combustion to generate electricity and 
provide heating to local residents [6]. Furthermore, technologies such as SHC 
and CFB can convert SC into OSA, a value-added multi-purpose material [6, 
32–34]. This process significantly reduces emissions of harmful gases such 
as SO2 and NOx, while improving both economic and environmental benefits 
[6, 32–34].

2.1.3. Co-combustion and co-pyrolysis with biomass

Every year, a large amount of biomass waste is produced globally, especially 
crop straws (e.g., wheat, rice, and maize) [35]. Biomass is a potential green 
energy source with advantages such as easy storage, high combustion 
efficiency, and high calorific value [35]. When properly managed, biomass can 
be efficiently combusted in industrial applications, contributing to sustainable 
energy production and reduced environmental impact [36]. Studies on the co-
combustion of OS and biomass in CFB boilers have demonstrated significant 
reductions in CO2 emissions and OSA formation compared to conventional 
OS combustion [37, 38]. These findings highlight the potential of biomass as 
a valuable co-fuel in the context of OS utilization, especially when integrated 
with advanced combustion technologies.
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Co-combustion of biomass with OS and SC offers several benefits,  
including increased combustion efficiency and reduced emissions of harmful 
gases such as SO2 and NOx [36, 39–41]. Industrial-scale applications have 
shown that biomass can be effectively utilized in CFB boilers, with minimal 
incomplete combustion when appropriate combustion conditions are main
tained [37, 38]. This synergy not only enhances overall energy efficiency but 
also provides a sustainable solution for managing agricultural residues and 
other biomass wastes [35, 36]. By integrating biomass into the combustion 
process, these wastes can be converted into valuable energy resources, thereby 
reducing landfill use and minimizing the environmental footprint of waste 
management [36, 41]. 

In addition to co-combustion, the co-pyrolysis of OS and biomass offers 
another promising strategy for enhancing the efficiency and sustainability of 
energy production. The co-pyrolysis process involves heating OS and biomass 
together in the absence of oxygen, which can improve the yield and quality of 
liquid and gaseous products while reducing the formation of solid residues [35]. 
For example, studies have shown that co-pyrolysis of OS and biomass (e.g., 
wheat straw) can enhance overall energy recovery by 15–20% compared to 
individual pyrolysis of each feedstock, primarily due to the synergistic effects 
between the two feedstocks [35]. A notable example is the co-pyrolysis of OS 
with peanut shells, which has been shown to improve the thermal conversion 
efficiency by 18.5% and increase the yield of liquid products by 12.3% 
compared to individual pyrolysis of  OS [42]. The interaction between OS and 
peanut shells during co-pyrolysis promotes the release of volatile compounds 
and enhances overall energy recovery, while reducing the formation of solid 
residues by 15.7% [42]. These co-combustion and  co-pyrolysis characteristics 
provide a new approach for the co-governance of OS by-products and other 
combustible solid wastes, such as municipal solid waste [41].

 2.1.4. Above-ground energy development strategies

The  single use of OS for retorting or power generation could result in low 
resource utilization efficiency and considerable residual waste. To compre
hensively utilize OS and reduce environmental pollution, especially solid 
waste pollution, researchers have proposed many prospective strategies 
based on different chemical and combustion characteristics of OS and SC 
[6, 29]. These strategies focus on the comprehensive utilization of OS and 
its by-products, encompassing processes such as retorting to produce oil and 
gas, combustion to generate electricity, and by-product utilization, which are 
currently or may be used in the future in China, Estonia, Jordan, and other 
countries or regions [2, 4, 7].

In addition to energy production, OS can be processed into chemical 
products, supporting the circular economy in the OS industry. For instance, 
VKG, an Estonian company, extracts fine chemicals, such as alkylresorcinols, 
from phenol water by-products of the Kiviter oil production process. These 
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chemicals are used in rubber, plywood, petroleum, and high-end applications, 
such as automotive parts, cosmetics, and pharmaceuticals [43]. This not only 
boosts OS’s economic value but also reduces waste, advancing sustainable 
development in the sector.

2.2. In situ conversion and carbon neutrality

In situ conversion technology for OS refers to artificially heating the under
ground reservoir, retorting the in-place solid kerogen into liquid oil and gas  
by maintaining a certain temperature for a period of time, and then extracting 
these products to the ground through specific processes [13, 27, 28, 44]. In situ 
conversion technology can be classified into four major groups according to 
the heating methods used in OS reservoirs: combustion heating, conduction 
heating, convection heating, and radiation heating (Table 1). Among these 
technologies, in situ conversion process (ICP), topochemical reaction (TSA), 
and in situ fracturing–combustion–heating have been successfully field-
tested, while some others are still in the laboratory stage (Table 1) [13, 28]. 
Compared to above-ground retorting technology, in situ conversion can extract  
deep OS resources with fewer surface environmental impacts and avoid the 
safety risks associated with ground operations [13, 27, 28, 44–46]. However, 
its disadvantages include low technology maturity, potential underground 
environmental risks, high initial investment, and low mining efficiency (due 
to long heating times) [13, 27, 28, 44]. Integrating reservoir stimulation, 
under  ground sealing, in situ catalysis, and other advanced technologies may 
help overcome these disadvantages [28, 45].

As carbon neutrality has become a global consensus in response to global 
warming and climate change,  carbon capture, utilization, and storage ( CCUS) 
has emerged as a major research focus in the field of earth sciences. In situ 
conversion technologies, such as convection heating and radiation heating, 
use CO2 either as a high-temperature fluid medium to heat reservoirs or as 
a carrier to displace produced hydrocarbons toward production wells, while 
the underground target formations provide space for  CO2 fixation [28, 45]. 
Therefore, in situ conversion of OS is an important application in CCUS. It is 
worth noting that there is a risk of CO2 leakage during heating, displacement, 
and storage processes in CCUS projects, highlighting the need for robust 
monitoring and the adoption of new technologies.

In addition to in situ conversion, other CCUS technologies, such as captur
ing CO2 from OS power plants, are essential for reducing the environmental 
impact of OS utilization. As demonstrated by Saia et al. (2022),  retrofitting 
existing OS power plants with CO2 capture technologies, including post-
combustion capture (PCC) and oxy-fuel combustion (OXY), can significantly 
reduce CO2 emissions [49].  However, the integration of these technologies 
reduces power plant efficiency and increases costs, which may exceed 
CO2 emission allowance fees and environmental charges [49]. Therefore, a 
comprehensive evaluation of the technical and economic feasibility of CCUS 
technologies is necessary to achieve sustainable OS utilization.
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Table 1. Classifications of in situ conversion technologies for oil shale [13, 27, 28, 
44–48]

H eating method Technology  R & D unit

Combustion

In situ combustion U.S. Bureau of Mines

TSA
(Topochemical reaction) Jilin University

ATS
(Autothermic pyrolysis in situ

conversion process)
Jilin University

In situ fracturing–combustion–heating Jilin Zhongcheng
Oil Shale Company

Conduction

ICP
(In situ conversion process) Shell

HVF
(High-voltage-power frequency 

 electric heating)
Jilin University

ElectrofracTM

(Electric heating through induced 
fractures)

ExxonMobil

Convection

MTI
(In situ steam injection technology, 
proposed by the Mining Technology 

Institute)

Taiyuan University of 
Technology

SCW
( Subcritical water) Jilin University

CCR
(Conduction, convection, and reflux)

American Shale Oil LLC 
(AMSO)

Radiation

Borehole microwave Phoenix Wyoming LLC

RF/CF
(Radio frequency/critical flow) Raytheon

RF
(Radio frequency) IIT Research Institute
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3.    Abandoned mines treatment

Abandoned OS mines  may bring about various hazards, including geological 
disasters, surface damage, soil degradation, groundwater pollution, sponta
neous combustion, and health risks [50–52].  However, due to their huge space 
and internal water resources, it is necessary to make rational use of these sites 
beyond  simply backfilling them with waste rock, SC, or OSA.

3.1. Land reclamation and ecological restoration

Reclamation and restoration after treatment not only effectively solve the 
 geological and ecological risks associated with abandoned mines but also 
significantly improve the living environment around OS sites. These efforts 
considerably increase the comprehensive utilization value of abandoned land 
and gradually restore  regional ecosystem services and environmental quality. 

Some ab andoned mines are suitable for agriculture through reclamation, 
expanding arable land and supporting the local economy. In addition, the urban 
landscape has been dramatically improved following treatment, and several 
abandoned mines have become well-known tourism (e.g., industrial tourism) 
and recreational destinations, thus promoting the su stainable development of 
resource-exhausted cities. For example, after the treatment of the Maoming 
(China) OS open-pit mine, the area now serves as an ecological park covering 
about 10 km2 for residents and tourists and functions as a reservoir with a 
storage capacity of 160 × 106 m3 of wat er for irrigation (Fig. 2a) [53]. In an
other case, Seaf ield Law (Scotland) – a bing (hill) composed of spent OS and 
municipal landfill – has been reshaped and restored as a local landmark and 
valuable leisure and entertainment space, modeled after a local glacial “crag-
and-tail” landform [54]. Similarly, a spoil tip (waste rock) in Ida-Viru County 
(Estonia), created by OS mining, is being transformed into an adve nture park 
with a racetrack to enhance ecological value and promote tourism (Fig. 2b) 
[55].

Fig. 2. Examples of OS mines after treatment (source: Google Earth): (a) Maoming 
OS open-pit mine (Museum of Opencast Mining in the red-framed area); (b)   MTÜ 
Estonia Elamuspark developed from a spoil tip in the red-framed area.
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The underground spaces of abandoned mines can  also be repurposed for 
museums, agriculture, laboratories (e.g., DUSEL in the USA), warehouses, 
ecological cities, data centers, waste disposals, parking garages, and more 
[51].

3.2. Energy storage

In recent years, the research and development of energy storage technologies 
have gained significant attention across various sectors – including power, 
tran sportation, and telecommunications – in many countries [56–58]. Aban
doned OS mines, with their vast, well-sealed spaces and considerable vertical 
drop-offs, offer potential as facilities for the physical storage of electrical 
energy (Fig. 3). Comp ared to other energy storage technologies, such as 
chemical, electromagnetic, and phase-change systems, the physical storage of 
electrical energy in abandoned mines presents advantages such as low cost, 
large-scale storage capacity, and high technological maturity [59]. In addition, 
abandoned mines, particularly underground mines or depleted formations, 
can be utilized to store gas and heat for energy storage, peak shaving, and 
emergency supply purposes (Fig. 3) [51]. 

3.2.1.  Electrical energy storage (EES)

Pumped hydro energy storage (PHES),  gravity energy storage (GES), and 
 compressed air energy storage (CAES) are the most promising technologies 
for storing electrical energy in abandoned OS mines (Fig. 3) [51, 52]. 

PHES and GES operate on similar principles: both technologies use 
electrical energy to elevate materials, thereby creating gravitational potential 
energy, which is later converted back into electrical energy through a generator 
[60–62]. The primary difference between the two lies in the materials used: 
PHES relies on water resources, while GES utilizes solid masses such as 
sand or gravel   [60–62]. Open-pit and underground mines can be repurposed 

Fig. 3. Energy storage in abandoned OS mines.
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for GES and PHES systems, provided sufficient drop heights exist [60, 62]. 
However, PHES also requires access to adequate water resources. CAES refers 
to pressurizing air using electricity during off-peak hours and releasing the 
high-pressure air through turbines to generate electricity during peak periods 
[56]. For example, Estonia is planning to build a PHES system with a capacity 
of up to 225 MW in Ida-Viru County, utilizing limestone rubble and closed 
mining tunnels left over from OS mining [63]. This project highlights the 
potential for repurposing abandoned OS mines as large-scale energy storage 
facilities.

In recent years, renewable energy sources, particularly solar and wind 
power, have experienced substantial growth in response to global climate 
change. Some abandoned mines have been or are being transformed into 
photovoltaic or wind power plants. However, the inherent volatility and 
intermittency of these energy sources can significantly impact power grid 
stability [60–62]. By integrating EES systems in abandoned mines with the 
power grid, especially in proximity to renewable energy power plants, it is 
possible to develop smart microgrids that ensure safety, stability, and strong 
peak regulation capabilities [62]. 

 3.2.2. Hydrogen and heat storage

 Hydrogen, with its high energy density and low mass density, has emerged 
as a promising solution to reduce dependence on fossil fuels, addressing 
environmental, climate change, and energy security concerns [64–66]. 
Therefore, hydrogen storage has recently gained significant prominence in 
green development. Compared with other hydrogen storage technologies,  such 
as physical storage and material-based storage, underground hydrogen storage 
(UHS) offers the advantages of l arge-scale capacity and low cost (Fig. 3) [64]. 
UHS in depleted shale reservoirs is particularly promising due to favorable 
sealing properties, suitable infrastructure, and confirmed geological structures 
[64–66]. Depleted OS formations, especially those exploited through in situ 
conversion technology, could also serve as potential UHS facilities [67]. 
However, since in situ conversion, unlike  hydraulic fracturing, significantly 
changes the original structure and composition of the formations, further 
research is necessary.

Geothermal energy, a clean and renewable source for heating and cooling, 
has gained attention worldwide due to its stability, environmental friendliness, 
low cost, and ease of operation.  Mine water refers to any groundwater present 
in underground OS mines with a relatively stable temperature that fills after 
the mine is abandoned (Fig. 3) [68]. It can be  a potential geothermal energy 
source for heat pumps and  provide sustainable thermal energy solutions for 
local areas [68–71]. Utilizing mine water for heating in the winter period and  
cooling in the summer period can help reduce air pollution and greenhouse 
gas emissions compared to traditional fossil fuel-based systems [68–70].
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3.3. Abandoned mine drainage ( AMD)

 AMD typically contains high concentrations of sulfates and metal ions, 
which can cause serious harm to the ecological environment and human 
health [72, 73]. Managing AMD has become a serious issue that plagues 
the treatment of abandoned mines. Both in situ conversion of OS and shale 
energy development require vast volumes of water for hydraulic fracturing 
and produce considerable quantities of wastewater during the  flowback period 
[13, 28, 44, 72, 73]. If abandoned mines are located close to conversion or 
extraction sites, AMD can be  considered a potential water source for hydraulic 
fracturing. The benefits of employing AMD for hydraulic fracturing include 
alleviating pressure on freshwater sources and mitigating AMD’s adverse 
environmental impacts in mining regions [72, 73]. Additionally, AMD can be 
used as a substitute water source in operating OS mines for dust control and 
mineral processing [52].

4. Trace elements and REEs

OS, a fine-grained argillaceous sedimentary rock, is often rich in trace elements 
(e.g., Mo, U, Th, Pb, Zn, Cr, V, Ni, Co, Sr, Ba, Rb, Re) and REEs (including 
the lanthanides, Sc, and Y) [5, 16, 74–78]. Some trace elements, such as  Mo 
(used in high-temperature  metallurgy) and U (a nuclear fuel), hold significant 
economic value [79, 80]. REEs, often referred to as “industrial vitamins,” are 
critical in military, petroleum, chemical, and advanced materials industries 
[81].

The average contents of trace elements (e.g., Be, B, Zn, Ga, Cs, Ta, W, 
Tl, Pb) and the total REEs (∑REE) in Chinese OSs are higher than crustal 
abundance, with average light REE (∑LR EE, where LREE refers to La–Eu) 
levels slightly exceeding those of the North American shale composite (NASC) 
[78]. The graptolite argillite (also known as Dictyonema shale or Dictyonema 
argillite), a type of OS in northern Estonia, differs from the well-known 
Estonian kukersite OS used for retorting or combustion and is characterized by 
high concentrations of U (up to 1200 ppm), Mo (1000 ppm), V (over 1600 ppm), 
Zn, and other heavy metals [16, 74–77]. It is estimated that Estonian black shale 
contains approximately 5.666 × 106 t U, 12.762 × 106 t Mo, 47.754 × 106 t V, 
0.213-0.254 × 106 t Th, and 16.533 × 106 t Zn [82].

Recent studies have shown that OSA can also be a significant source of 
REEs. For example, a study conducted in Jordan investigated the presence 
of REEs in OSA generated from different locations [83]. The study found 
that OSA contains various REEs  extractable through acid digestion methods, 
with La and Ce being the most abundant elements [83]. The maximum 
concentration of REEs in all OSA samples reached up to 74.4 ppm, depending 
on the region [83].  Another study on Estonian kukersite OSA from CFB boilers 



255Comprehensive utilization of oil shale

reported the presence of REEs and demonstrated that the selective separation 
of ash fractions enables their recovery, particularly from the finer ash particles 
collected in electrostatic precipitators [84].

However, these elements can be converted into harmful substances if not 
appropriately treated  and may cause pollution to the surrounding environment 
after OS retorting or power generation.  The extraction of trace metal elements 
from OS and its by-products has not attracted enough attention  due to grade, 
economic, and technological constraints. In fact, the large-scale extraction of 
elements from OS has a long history of nearly 80 years [16, 74–77]. Between 
1948 and 1952, about 22.5 tons of elemental U were produced by processing 
0.271 × 106 t of graptolite argillite from an underground mine near Sillamäe 
town in northeastern Estonia [16, 75–77]. In recent years, with the gradual 
maturation of element extraction technologies, efficient and clean extraction of 
trace elements and REEs from OS and its by -products has  become increasingly 
feasible, helping to mi nimize environmental pollution and  support the green 
and sustainable development of the OS industry [82].

5. Construction materials

OS  and its by-products usually contain quartz, calcite, and clay minerals, 
making them valuable raw materials for various construction applications 
[19]. A mong these, cement production stands out as a primary use, offering 
significant potential for reducing carbon emissions in the construction industry. 
Additionally, the by-products have historically been utilized in the production 
of bricks and blocks, providing a sustainable alternative to traditional clay-
based materials [19]. Furthermore, the by-products can be employed as 
subgrade material in road construction, enhancing the physical properties of 
soil and contributing to the development of more durable infrastructure [85]. 
A notable example of this sustainable approach is the low-carbon construction 
materials project in Beipiao City, Liaoning Province, China, which processes 
3.4 million tons of OS and its by-products annually. Integrating OS and its 
by-products into these construction applications helps reduce land occupation, 
minimize environmental pollution, and achieve a more sustainable approach 
to construction material production.

5.1. Cements

Cement is one of the world’s most used construction materials, yet its 
production is one of the largest sources of global CO2 emissions [26, 86]. 
Significant greenhouse gas emissions arise from calcite decarbonization and 
fuel consumption during clinker burning in cement production [86]. The 
cement industry is in urgent need of finding alternative raw materials and fuels 
to reduce carbon emissions. Utilizing OS and its by-products as substitutes 
can significantly reduce CO2 emissions [19, 26, 86].
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Among OS, SC, and OSA, OSA is the most commonly used raw material in 
cement production, followed by OS. OSA is recognized as a self-cementitious 
material, comprising two functional components: a cementitious part with 
high CaO content and a pozzolanic part containing SiO2, Al2O3, and Fe2O3 [19, 
86]. The use of  OSA in cement production has a long history, dating back to 
the early 20th century [87]. For instance, the cement works at Dotternhausen 
in Germany have utilized OSA from burnt Toarcian Posidonia shale as an 
additive in blended cement since 1939 [22, 86–89]. Similarly, OSA from 
OS power plants is used as a supplementary cementitious material (SCM) at 
Kunda Nordic Cement in Estonia, replacing nearly 30% of clinker [22, 86, 90].

Calcareous OSs with low calorific value, found in many countries, are 
unsuitable for hydrocarbon and electricity production. However, their chemical 
compositions are similar to Portland cement clinker, making them suitable 
for partially replacing the fuel and raw materials needed in eco-friendly 
belite cement clinker production [86]. This substitution not only reduces CO2 
emissions but also lowers energy consumption [86]. It is worth noting that 
finding suitable blend ratios of OS and its by-products, along with optimizing 
operating temperatures, is essential to maintain cement’s essential properties, 
such as strength, durability, and setting time [91].

Recent studies have shown that mechanical activation of OSA can 
significantly enhance its cementitious properties. For example, Paaver et al. 
(2021) demonstrated that even a short period of mechanical activation of Ca-
rich circulating fluidized bed combustion (CFBC) OSA can yield a nearly 
tenfold improvement in the compressive strength of  hydrated OSA  pastes, 
reaching up to 60 MPa after 90 days of curing without any chemical activation 
or blending [92]. This suggests that mechanically activated OSA can be a 
viable alternative to traditional cement clinker, especially in regions where 
clinker production has been discontinued, such as in Estonia.

5.2.  Bricks and blocks

 Traditional  brick and block production  requires considerable clay resources, 
destroying large land areas and  topsoil. OSA has historically been used 
for  brick and block manufacturing [87].  Using OSA for bricks and blocks 
production, it is possible to reduce the waste of land resources and  support 
a circular economy through the rational utilization of industrial solid waste.

A study by Hadi and Abdelhadi (2018) found that OSA, as a self-cementi
tious material, can be blended with marble and granite sludge to produce low-
cost, compressed, strong, and lightweight bricks, while also minimizing their 
 negative impacts on the environment [93]. The low thermal conductivity of 
these bricks makes them suitable for arid and semi-arid climates, contributing 
to improved indoor thermal comfort [93].

Silbet, a construction block produced from OSA, was one of the three most 
widely used small blocks for wall construction in Estonia, alongside Aeroc 
(aerated concrete block) and Fibo (compacted LECA, or lightweight expanded 
clay aggregate, blocks) [94]. A previous study indicates that  Silbet blocks 
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exhibited moderate density, thermal conductivity (λ10 and λn), and diffusion 
constant (μ) compared to the other two, making them suitable for lightweight 
block walls in Estonia’s climate [94]. However, Silbet blocks have not been 
produced for about ten years. Until the end of 2016, Rocl ite blocks were also 
manufactured in Estonia from a mixture of OSA, sand, and water, offering 
durability and environmental benefits through the utilization of industrial by-
products [95]. These practices highlight the potential of OSA and other by-
products for sustainable brick and block production.

5.3. Subgrade materials

Road construction requires large quantities of aggregates and filling materials 
[85]. OSA, a type of solid waste, can be utilized as a subgrade material to 
partially substitute traditional aggregates and filling materials. Previous 
research has shown that using OSA as a fine aggregate in open graded friction 
courses (OGFC) improves pavement performance, extends service life, and 
enhances resistance to springtime clogging, which is beneficial for sponge 
city construction [96]. 

OSA also improves the physical properties of soil, supporting its role as a 
subgrade material [85, 97]. For example, OSA was used as a binder in the mass 
stabilization of soft peat soil and in the upper layer of the Simuna-Vaiatu Road 
constructed in a pristine swamp area in eastern Estonia from 2013 to 2014 
[97]. A study by Wei et al. (2014) found that silty clay modified with OSA and 
fly ash (another solid combustion by-product) exhibited better mechanical and 
physical properties than the original silty clay, making it a promising “green” 
subgrade material [85].

In addition to subgrade applications, OS and its by-products, especially 
OSA, can also be used in a wide range of construction materials, including 
concrete, mortar, aggregates, geopolymers, glass-ceramics, soil stabilizers, 
asphalt binders, and even 3D printing materials, owing to their excellent 
properties such as self-cementitious behavior (Fig. 4) [19, 25, 98–101]. 

Fig. 4. Construction materials produced from OS and its by-products.
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optimizing operating temperatures, is essential to maintain cement’s essential properties, 
such as strength, durability, and setting time [91]. 

Recent studies have shown that mechanical activation of OSA can significantly 
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Traditional brick and block production requires considerable clay resources, destroying 
large land areas and topsoil. OSA has historically been used for brick and block 
manufacturing [87]. Using OSA for bricks and blocks production, it is possible to reduce 
the waste of land resources and support a circular economy through the rational 
utilization of industrial solid waste. 

A study by Hadi and Abdelhadi (2018) found that OSA, as a self-cementitious 
material, can be blended with marble and granite sludge to produce low-cost, 
compressed, strong, and lightweight bricks, while also minimizing their negative 
impacts on the environment [93]. The low thermal conductivity of these bricks makes 
them suitable for arid and semi-arid climates, contributing to improved indoor thermal 
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Besides OSA, waste rock from OS mining can also be utilized as aggregate in 
civil engineering and road construction, particularly in frost-free environments 
[102, 103]. This not only reduces the environmental impact of waste rock 
disposal but also provides a sustainable alternative to traditional construction 
materials, further contributing to the circular economy in the OS industry.

6.  Environmental functional materials

Although OS and its by-products are usually  considered potential pollution 
sources, they can serve as environmental functional materials to control 
pollution  after activation and modification – especially SC and OSA. These 
materials are mainly used  for water and air pollution control.

6.1. Water pollution control

SC has potential for use in adsorbent preparation due to its rich organic and 
inorganic components. However, its dense structure and complex composition 
result in poor adsorption performance [104]. The adsorption properties of 
different new functional materials synthesized after modification of SC with 
chemical and physical methods were significantly improved compared to the 
original SC, exhibiting excellent adsorption capacity for cationic and anionic 
dyes as well as other water pollutants [104, 105]. 

Similarly, OSA can be modified to synthesize effective adsorbents for 
dyes, heavy metals, and U, such as zeolite and hydrotalcite, providing new 
strategies for treating wastewater and managing solid waste from the OS 
industry [106–108]. Since OSA is rich in Al, Fe, and silicon oxides, modified 
OSA can also be used to prepare inorganic polymer coagulants for municipal 
sewage treatment [109]. For example, Shawabkeh et al. (2004) demonstrated 
that OSA can be converted into zeolite for the removal of heavy metals, such 
as Cd and Pb, from wastewater, showing high adsorption efficiency [106]. 
Additionally, OSA-based hydrotalcite has been used to remove U from 
contaminated water, achieving significant removal rates [108].

 6.2. Air pollution control

Environmental functional materials prepared from modified SC and OSA 
can help reduce not only water pollution but also  air pollution and carbon 
emissions. These materials exhibit outstanding gas adsorption characteris - 
tics – particularly for CO2 – and good  adsorption reusability, making them 
suitable for use in industrial processes involving physical adsorption, 
contributing to  atmospheric pollution control [110, 111]. For instance, Reinik 
et al. (2011) demonstrated that alkaline-modified OSA exhibits a significant 
CO2 adsorp tion capacity and could be utilized in industrial processes for 
capturing CO2 emissions from flue gases, thereby contributing to the reduction 
of carbon emissions [110]. 
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The  OSA formed during the combustion of OS has a porous structure with 
good H2S adsorption capacity and does not adsorb hydrocarbons, making it 
suitable as an adsorbent for removing H2S from liquefied petroleum gas [112]. 
This application is particularly important in the petroleum industry, where H2S 
is a common pollutant that needs to be removed to comply with environmental 
regulations. Using OSA for H2S removal not only reduces air pollution but 
also enhances the safety and efficiency of industrial processes.

In addition to these materials,  activated carbon (AC) and its composites – 
prepared from raw OS through chemical activation – exhibit strong adsorption 
capacity due to  their high specific surface area and porous structure. These 
materials can effectively adsorb dyes, heavy metals, harmful gases, and other 
pollutants [113, 114]. For example, Hamdan et al. (2023) demonstrated that 
AC derived from OS effectively adsorbs volatile organic compounds (VOCs) 
from industrial emissions, contributing to air quality improvement [114].

7.   Agriculture and forestry

OS and its by-products contain various nutrient components that support plant 
growth, offering potential applications in agriculture and forestry.

7.1. Agriculture

OS and SC are rich in organic matter, minerals, and trace elements, providing 
essential nutrients while also improving soil pH, aeration, structure, and water 
retention [115–118]. These enhancements increase soil fertility and support 
microbial activity. The use of OSA in agriculture has  also shown promising 
results in improving crop yields and quality [23]. 

OSA has been widely recognized for its potential in neutralizing acid soils 
and improving the fertility of arable and grassland areas. Its high content of free 
CaO makes OSA an effective sorbent for binding acidic gaseous compounds 
such as SO2 and CO2, significantly   enhancing soil pH and reducing acidity 
[119]. This process not only improves the soil’s chemical properties but also 
enhances its physical structure, making it more suitable for agricultural use.

SC and OSA can be utilized to produce organic fertilizers and soil  condi
tioners [115, 117]. Organic fertilizers supply sustainable nutrient sources, 
promote soil health, and stimulate plant growth. Soil conditioners further 
improve water and nutrient retention, bolstering plant resistance to diseases 
and pests. For instance, Mangrich et al. (2014) developed a slow-release 
K+ fertilizer using OSA from the Brazilian OS industrialization process 
(Petrosix), demonstrating its potential to reduce nutrient loss in acidic soils 
[115]. Additionally, superabsorbent polymers (SAP) made from chitosan and 
SC have been explored for their excellent water absorption and retention 
capabilities, promoting plant growth and drought resistance [117]. 
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7.2. Forestry

OS and its by-products are suitable for forestry, particularly in the afforestation 
of peatlands, the improvement of saline-alkali soils, and desertification control 
[118, 120]. When applied to soil, OS and SC can increase nutrient levels, 
crucial for the survival and growth of plants such as sea buckthorn to resist 
stressors like drought and salinity [118]. Alkaline OSAs, especially those rich 
in P and K, have also been shown to significantly enhance the  growth and 
above- and below-ground biomass formation of species such as Silver birch 
and Scots pine [120]. 

8. High-value materials

SC and OSA, by-products from OS retorting and combustion – especially  
OSA – are gaining enormous attention in material science for their potential in 
h igh-value applications, offering innovative approaches for waste management 
and promoting environmental sustainability.

Rich in Si and Al, OSA is transformed into various valuable materials. 
Notably, it has been utilized to produce nano-sized α-Al2O3 and γ-Al2O3, which 
are applied in catalysts, electronics, and fine ceramic composites [121–123]. 
The production process typically involves calcination, acid leaching, and 
homogeneous chemical precipitation, which are crucial for controlling  particle 
size and morphology [121]. Furthermore, OSA has been employed to synthe
size shape-stabilized composite phase change materials (ss-CPCMs), which 
exhibit enhanced thermal properties, making them suitable for thermal energy 
storage in building envelo pes, potentially leading to substantial energy 
savings [124]. The innovative use of OSA also extends to the production of 
silica  nanoparticles and aerogels [125–127]. Silica nanoparticles derived from 
OSA have demonstrated high purity and specific surface area, desirable for 
catalysts, adsorbents, and lightweight structural materials [125]. Similarly, 
aerogels synthesized from OSA have shown excellent thermal insulation 
properties due to their low density and high porosity [126, 127].

SC has also garnered attention due to its substantial SiO2 content and trace 
amounts of other metals. Extracted SiO2 from SC can be used as a hard template 
for creating hierarchical porous carbon skeletons [128]. These nitrogen-doped 
porous carbon materials have superior performance as cathode hosts in Li–S 
batteries, highlighting their importance in energy storage applications [128].
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9.  Conclusions and  recommendations

This minireview has highlighted the significance of OS as a resource that 
goes beyond its traditional energy applications, offering substantial potential 
for construction, agriculture, and other high-value uses. The comprehensive 
utilization of OS and its  by-products, SC and OSA, presents an opportunity 
to address the environmental challenges associated with its exploitation while 
enhancing economic value.

The integration of OS into sustainable development strategies is contingent 
upon the adoption of innovative technologies and practices. These include 
using CFB, SHC, and other advanced proven technologies to improve oil 
yield; the application of in situ conversion technologies to reduce surface 
impacts; the implementation of carbon capture and storage solutions to miti
gate greenhouse gas emissions; and both co-combustion with biomass to 
improve combustion efficiency and co-pyrolysis with biomass to enhance 
thermal conversion efficiency.

Equally important is the comprehensive treatment of abandoned OS mines 
to  reduce  adverse impacts on human society and the environment. With 
expansive and secure interiors, abandoned OS mines  present an ideal setting 
for the physical storage of electrical, chemical, and thermal energy. The con
solidation and rehabilitation of these sites for energy storage is a testament to 
the circular economy and a pragmatic solution to the  intermittency challenges 
faced by renewable energy sources.

Furthermore, recovering valuable trace elements and REEs from OS and 
its by-products provides an additional source of revenue and contributes 
to reducing ecological harm. Transforming OS and its by-products into 
construction materials, environmental functional materials, and other high-
value products is a prime example of the circular economy in action, promoting 
a sustainable and diversified utilization paradigm.

 To ensure the  sustainable and responsible development of OS resources, 
the following recommendations are proposed:

1.	    Improve testing  strategy: To achieve optimal economic and environ
mental benefits, it is essential to improve the fundamental testing 
strategy for OS and its by-products. Varying oil content, calorific value, 
and chemical composition require customized development strategies.  
A comprehensive analysis will allow for the categorization and appro
priate application of different OS, SC, and OSA, whether for energy 
extraction, material production, or other uses. This approach is crucial 
for maximizing  resource value and minimizing  negative environmental 
impacts.

2.	 ﻿Assess environmental impacts : Future research should focus on conduct
ing comprehensive environmental impact assessments to quantify the 
benefits of utilizing OS by-products in various applications. Specific 
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attention should be given to comparing the carbon footprint of OS-
derived materials with that of conventional products, such as cement 
and construction aggregates, to provide a clearer understanding of their 
environmental advantages.

3.	  Explore new applications: New technologies open up exciting possibili
ties for utilizing OS resources. For instance, our research team is working 
on using OS and its by-products to prepare a variety of novel high-value 
materials, such as carbon quantum dots (CQDs). Exploring the potential 
of OS resources in producing carbon nanotubes, graphene, and other 
advanced carbon-based materials could lead to the development of high-
performance composites, electronic devices, and energy storage solutions. 
Additionally, further research is needed to investigate the potential of OS 
and its by-products in producing sustainable materials. By diversifying 
the applications of OS, it is possible to maximize resource utilization 
and contribute to the transition toward a more sustainable and circular 
economy.
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