ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering
Conceptual design framework supported by dimensional analysis and System Modelling Language; 303–316
PDF | doi: 10.3176/eng.2008.4.02

Authors
François Christophe, Raivo Sell, Eric Coatanéa
Abstract
Early design is widely accepted inside the engineering design community as a crucial design stage. This is due to the fact that decisions taken at this stage constrain heavily the final performance of products. This article presents a design framework for the early design stage of mechatronic products. This framework provides a scientifically coherent methodology for refinement, analysis, modelling, comparison and evaluation of design solutions at early stage of the design process. A System Modelling Language (SysML) is proposed as a powerful modelling language properly adapted to mechatronic requirements. In addition, the article proposes to combine SysML with dimensional analysis and qualitative physics in order to provide a design tool able to carry out also early simulations, comparisons and evaluations.
References

  1. Lotter, B. Manufacturing Assembly Handbook. Butterworths, Boston, 1986.

  2. Hsu, W. and Woon, I. M. Y. Current research in the conceptual design of mechanical products. Computer-Aided Design, 1998, 30, 377–389.
doi:10.1016/S0010-4485(97)00101-2

  3. Blessing, J. Consolidation of design research: the issue of design theory. In International Conference on Design. Dubrovnik, 2006.

  4. Sell, R. Model Based Mechatronic Systems Modeling Methodology in Conceptual Design Stage. TUT Press, Tallinn, 2007.

  5. Systems Engineering Handbook. INCOSE-TP-2003-016-02, Version 2a, Technical Board of International Council on Systems Engineering (INCOSE), 2004; http://www.incose.org

  6. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language User Guide. Addison Wesley, MA, 1999.
doi:10.1007/3-540-46852-8_1

  7. UML for Systems Engineering RFP. OMG document ad/03-03-41, 2003; http://syseng.omg.org/

  8. UML Profile for Schedulability, Performance, and Time Specification. OMG document ptc/2003-03-2, 2003; http://syseng.omg.org/

  9. Kukkala, P., Riihimäki, J., Hännikäinen, M., Hämäläinen, T. D. and Kronlöf, K. UML 2.0 profile for embedded system design. In Proc. Design, Automation and Test in Europe Conference. Munich, 2005, 710–715.

10. UML 2.0 Testing Profile Specification, version 1.0. OMG document formal/05-07-07, 2005; http://syseng.omg.org/

11. Rajan, S. P., Hasegawa, T., Shoji, M., Zhu, Q. and Nakata, T. UML profile for SoC RFC. DAC 2005 Workshop, UML-SoC 2005 UML for SoC Design Conference. Anaheim, 2005.

12. Gurd, A. Using UMLTM 2.0 to solve systems engineering problems. Telelogic. 2003; http://whitepapers.zdnet.co.uk

13. Berkenkötter, K., Bisanz, S., Hannemann, U. and Peleska, J. HybridUML profile for UML 2.0. Int. J. Software Tools Technol. Transfer, 2006, 8, 1–36.
doi:10.1007/s10009-005-0199-4

14. System Modeling Language (SysML) Specification. Version 1.0 Draft. OMG document ad/2006-03-01, 2006; http://www.sysml.org

15. Sell, R. and Tamre, M. Integration of V-model and SysML for advanced mechatronics system design. In Proc. Research and Education on Mechatronics Conference REM05. Annecy, 2005, 276–280.

16. Rzevski, G. On conceptual design of intelligent mechatronic system. Mechatronics, 2003, 13, 1029–1044.
doi:10.1016/S0957-4158(03)00041-2

17. Granda, J. J. The role of bond graph modeling and simulation in mechatronics systems. An integrated software tool: CAMP-G, MATLAB–SIMULINK. Mechatronics, 2002, 12,1271–1295.
doi:10.1016/S0957-4158(02)00029-6

18. Seo, K., Fan, Z., Hu, J., Goodman, E. D. and Rosenberg, R. C. Toward a unified and automated design methodology for multi-domain dynamic systems using bond graphs and genetic programming. Mechatronics, 2003, 13, 851–885.
doi:10.1016/S0957-4158(03)00006-0

19. Sonin, A. A. The Physical Basis of Dimensional Analysis, 2nd ed. Department of Mechanical Engineering, MIT, Cambridge, MA, 2001.

20. Bhashkar, R. and Nigam, A. Qualitative physics using dimensional analysis. Artificial Intelligence, 1990, 45, 73–111.
doi:10.1016/0004-3702(90)90038-2

21. Coatanéa, E. Conceptual Design of Life Cycle Design: A Modeling and Evaluation Method Based on Analogies and Dimensionless Numbers. Helsinki University of Technology, Espoo, 2005.

22. Butterfield, R. Dimensional analysis revisited. J. Mech. Eng. Sci., 2001, 215, 1365–1375.

23. Matz, W. Le principe de similitude en génie chimique. Dunod, Paris, 1959.

24. Gero, J. S. and Kannengiesser, U. The situated function-behaviour-structure framework. Design Study, 2004, 25, 1–25.
doi:10.1016/j.destud.2003.10.010
Back to Issue

Back issues