ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Estonian Journal of Engineering

Using small punch testing method for the analysis of creep behaviour of Al-Al4C3 composites; pp. 243–254

Full article in PDF format | doi: 10.3176/eng.2010.3.04

Authors
Michal Besterci, Ferdinand Dobeš, Priit Kulu, Katarína Sülleiová

Abstract
Mechanical alloying and mechanical attrition are both processes based on the imparting of a severe plastic deformation using high-energy ball mills. The experimental material, dispersion-strengthened aluminium with Al4C3 particles, was prepared by mechanical alloying of aluminium powder (< 50 μm) with different types of carbon. Creep behaviour of the composite, based on aluminium matrix, reinforced by 4 vol% Al4C3, was studied at temperatures from 623 to 723 K by small punch testing with a constant force. The time dependence of the central deflection was registered and the minimum deflection rate was determined. The dependence of this quantity on the applied force can be described by a power function with relatively high value of the power. The dependence can be rationalized by an analysis in terms of the threshold concept. Analytical procedure for comparison of the threshold force in small punch experiments and threshold stress in conven­tional creep testing are given.
References

  1. Besterci, M. Dispersion Strengthened Aluminium Prepared by Mechanical Alloying. Cambridge Int. Sci. Publ., Chichester, 1999.

  2. Fecht, H. J. Nanostructure formation by mechanical attrition. NanoStructured Mater., 1995, 6, 33–42.
doi:10.1016/0965-9773(95)00027-5

  3. Viljus, M. The microstructure and properties of fine-grained cermet. PhD Thesis, Centre for Materials Research, Faculty of Science, Tallinn University of Technology, 2003.

  4. Thiessen, K. P. and Sieber, K. Energetische Randbedingungen tribochemischer Prozesse. Zeitschr. Physik. Chemie, 1979, Teil I-III, 260, 403–422.

  5. Benjamin, J. S. Mechanical alloying. Scientific American, 1976, 234, 40–48.
doi:10.1038/scientificamerican0576-40

  6. Schafer, G. B. and McCormick, P. G. Mechanical alloying. Materials Forum, 1992, 16, 91–97.

  7. Schafer, G. B. and McCormick, P. G. On the kinetics of mechanical alloying. Metallurg. Trans. A, 1992, 23A, 1285–1290.
doi:10.1007/BF02665060

  8. Koch, C. C. Synthesis of nanostructured materials by mechanical milling: problems and opportunities. NanoStructured Mater., 1997, 9, 13–22.
doi:10.1016/S0965-9773(97)00014-7

  9. Jangg, G., Kutner, F. and Korb, G. Herstellung und Eigenschaften von dispersionsgehärteten Aluminium. Aluminium, 1975, 51, 641–645.

10. Besterci, M. Dispersion-strengthened aluminium prepared by mechanical alloying. Int. J. Mater. Prod. Technol., 2000, 15, 356–408.

11. Korb, G., Jangg, G. and Kutner, F. Mechanism der dispersionsverfestigten Al-Al4C3 Werkstof­fen. Draht, 1979, 5, 318–324.

12. Lucas, G. E. Review of small specimen test technique for irradiation testing. Metall. Trans., 1990, 21A, 1105–1119.

13. Baik, J. M., Kameda, J. and Buck, O. Small punch test evaluation of intergranular embrittlement of an alloy steel. Scripta Metall., 1983, 17, 1443–1447.
doi:10.1016/0036-9748(83)90373-3

14. Orlová, A., Kuchařová, K., Čadek, J. and Besterci, M. Creep dosperzně spevněného hliniku. Kovové Mater., 1986, 24, 505–529.

15. Monkman, F. C. and Grant, N. J. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. ASTM, 1956, 56, 593–605.

16. Ule, B., Šustar, T., Dobeš, F., Milička, K., Bicego, V., Tettamanti, S., Maile, K., Schwarz­kopf, C., Whelan, M. P., Kozlowski, R. H. and Klaput, J. Small punch test method assess­ment for the determination of the residual creep, life of service exposed components – outcomes from an interlaboratory exercise. Nuclear Eng. Design, 1999, 192, 1–11.
doi:10.1016/S0029-5493(99)00039-4

17. Dobeš, F., Milička, K., Ule, B., Šustar, T., Bicego, V., Tettamanti, S., Kozlowski, R. H., Klaput, J., Whelan, M. P., Maile, K. and Schwarzkopf, C. Miniaturised disk-bend creep test of heat-resistant steels at elevated temperatures. Eng. Mech., 1998, 5, 157–160.

18. Li, Y. and Langdon, T. G. A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites. Acta Mater., 1999, 47, 3395–3403.
doi:10.1016/S1359-6454(99)00219-0

19. Abendroth, M. and Kuna, M. Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks. Comput. Mater. Sci., 2003, 28, 633–644.
doi:10.1016/j.commatsci.2003.08.031

20. Campitelli, E. N., Spätig, P., Bonadé, R., Hoffelner, W. and Victoria, M. Assessment of the constitutive properties from small ball punch test: experiment and modelling. J. Nuclear Mater., 2004, 335, 366–378.
doi:10.1016/j.jnucmat.2004.07.052

21. Evans, R. W. and Evans, M. Numerical modelling the small disk creep test. Mater. Sci. Technol., 2006, 22, 1155–1162.
doi:10.1179/174328406X118258

22. Lippmann, H. Mechanik des plastischen Fliessens. Springer-Verlag, Berlin, 1981.

23. Timoshenko, S. Strength of Materials. 3rd ed. Mc-Graw-Hill, New York, 1957.

24. Dobeš, F. and Milička, K. Small punch testing in creep conditions. J. Test. Eval., 2001, 29, 31–35.
doi:10.1520/JTE12388J
Back to Issue