The basic concepts for modelling wave propagation in solids with microstructure are described. It is shown that the Green method, based on postulating the potential energy function, has certain advantages compared with the widely used Cauchy method, which postulates directly the stress-strain relations. Simple examples demonstrate how the Green method together with internal variables permits to determine the microstress and the interactive force between the constituents of solids. The structure of governing equations and possible physical effects captured by such modelling are described. The microstress and interactive force lead to the dispersion of waves at the macrolevel.
1. Eringen, A. C. and Suhubi, E. S. Nonlinear Theory of Continuous Media. McGraw Hill, New York, 1962.
2. Bland, D. R. Nonlinear Dynamics Elasticity. Blaisdell, Waltham MA, 1969.
3. Haupt, P. Continuum Mechanics and Theory of Materials. Springer, Berlin, 2002.
http://dx.doi.org/10.1007/978-3-662-04775-0
4. Eringen, A. C. and Suhubi, E. S. Nonlinear theory of simple microelastic solids I & II. Int. J. Eng. Sci., 1964, 2, 189–203, 389–404.
http://dx.doi.org/10.1016/0020-7225(64)90004-7
5. Mindlin, R. D. Microstructure in linear elasticity. Arch. Rat. Mech. Anal., 1964, 16, 51–78.
http://dx.doi.org/10.1007/BF00248490
6. Capriz, G. Continua with Microstructure. Springer, New York, 1989.
http://dx.doi.org/10.1007/978-1-4612-3584-2
7. Maugin, G. A. Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford, 1999.
8. Eringen, A. C. Microcontinuum Field Theories. I Foundations and Solids}. Springer, New York, 1999.
http://dx.doi.org/10.1007/978-1-4612-0555-5
9. Maugin, G. A. A historical perspective of generalized continuum mechanics. In Mechanics of Generalized Continua (Altenbach, H. et al., eds). Springer, Berlin, 2011, 3–19.
http://dx.doi.org/10.1007/978-3-642-19219-7_1
10. Berezovski, A., Engelbrecht, J. and Maugin, G. A. Generalized thermomechanics with internal variables. Arch. Appl. Mech., 2011, 81, 229–240.
http://dx.doi.org/10.1007/s00419-010-0412-0
11. Engelbrecht, J. and Berezovski, A. Internal structures and internal variables in solids. J. Mech. Mater. Struct., 2012, 7, 983–996.
http://dx.doi.org/10.2140/jomms.2012.7.983
12. Kestin, J. Internal variables in the local-equilibrium approximation. J. Non-Equilibr. Thermodyn., 1993, 18, 360–379.
13. Maugin, G. A. and Muschik, W. Thermodynamics with internal variables I: General concepts. J. Non-Equilib. Thermodyn., 1994, 19, 217–249.
14. Ván, P., Berezovski, A. and Engelbrecht, J. Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn., 2008, 33, 235–254.
15. Maugin, G. A. Material Inhomogeneities in Elasticity. Chapman and Hall, London, 1993.
16. Askes, H. and Metrikine, A. V. One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part I: Generic formulation. Eur. J. Mech. A/Solids, 2002, 21, 555–572.
http://dx.doi.org/10.1016/S0997-7538(02)01218-4
17. Papargyri-Beskou, S., Polyzos, D. and Beskos, D. E. Wave dispersion in gradient elastic solids and structures: A unified treatment. Int. J. Solids Struct., 2009, 16, 3751–3759.
http://dx.doi.org/10.1016/j.ijsolstr.2009.05.002
18. Berezovski, A., Engelbrecht, J. and Berezovski, M. Waves in microstructured solids: a unified view point of modelling. Acta Mech., 2011, 220, 349–363.
http://dx.doi.org/10.1007/s00707-011-0468-0
19. Engelbrecht, J., Pastrone, F., Braun, M. and Berezovski, A. Hierarchies of waves in nonclassical materials. In Universality in Nonclassical Nonlinearity (Delsanto, P.-P., ed.). Springer, New York, 2007, 29–47.
20. Berezovski, A., Engelbrecht, J. and Peets, T. Multiscale modeling of microstructured solids. Mech. Res. Comm., 2010, 37, 531–534.
http://dx.doi.org/10.1016/j.mechrescom.2010.07.020
21. Berezovski, A., Berezovski, M. and Engelbrecht, J. Two-scale microstructure dynamics. J. Multiscale Modelling, 2011, 3, 177–188.
http://dx.doi.org/10.1142/S1756973711000479
22. Berezovski, A., Engelbrecht, J. and Maugin, G. A. Thermoelasticity with dual internal variables. J. Thermal Stresses, 2011, 34, 413–430.
http://dx.doi.org/10.1080/01495739.2011.564000
23. Berezovski, A. and Engelbrecht, J. Waves in microstructured solids: dispersion and thermal effects. In Proc. 23rd International Congress of Theoretical and Applied Mechanics (Bai, Y., Wang, J. and Fang, D., eds). Beijing, China, 2012, SM07-005.
24. Engelbrecht, J., Berezovski, A., Pastrone, F. and Braun, M. Waves in microstructured materials and dispersion. Phil. Mag., 2005, 85, 4127–4141.
http://dx.doi.org/10.1080/14786430500362769
25. Whitham, G. B. Linear and Nonlinear Waves. J. Wiley, New York, 1974.
26. Berezovski, M., Berezovski, A. and Engelbrecht, J. Waves in materials with micro\-structure: numerical simulation. Proc. Estonian Acad. Sci., 2010, 59, 99–107.
http://dx.doi.org/10.3176/proc.2010.2.07
27. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T. and Berezovski, M. Dispersive waves in microstructured solids. Int. J. Solids Struct., 2013, 50, 1981–1990.
http://dx.doi.org/10.1016/j.ijsolstr.2013.02.018
28. Peets, T., Randrüüt, M. and Engelbrecht, J. On modelling dispersion in microstructured solids. Wave Motion, 2008, 45, 471–480.
http://dx.doi.org/10.1016/j.wavemoti.2007.09.006
29. Engelbrecht, J., Peets, T., Tamm, K. and Salupere, A. Deformation waves in microstructured solids and dimensionless parameters. Proc. Estonian Acad. Sci., 2013, 62, 109–115.
http://dx.doi.org/10.3176/proc.2013.2.04
30. Christov, C., Maugin, G. A. and Porubov, A. On Boussinesq’s paradigm in nonlinear wave motion. C.R.Mécanique, 2007, 335, 521–535.
http://dx.doi.org/10.1016/j.crme.2007.08.006
31. Berezovski, A., Engelbrecht, J. and Berezovski, M. Dispersive wave equations for solids with microstructure. In Vibration Problems – ICOVP 2011: The 10th International Conference on Vibration Problems} (Naprstek, J. et al., eds). Springer, 2011, 699–705.
32. Engelbrecht, J., Berezovski, A. and Salupere, A. Nonlinear deformation waves in solids and dispersion. Wave Motion, 2007, 44, 493–500.
http://dx.doi.org/10.1016/j.wavemoti.2007.02.006
33. Engelbrecht, J., Salupere, A. and Tamm, K. Waves in microstructured solids and the Boussinesq paradigm. Wave Motion, 2011, 48, 717–726.
http://dx.doi.org/10.1016/j.wavemoti.2011.04.001
34. Randrüüt, M. and Braun, M. On one-dimensional waves in microstructured solids. Wave Motion, 2010, 47, 217–230.
http://dx.doi.org/10.1016/j.wavemoti.2009.11.002
http://dx.doi.org/10.1007/978-3-642-21584-1