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Abstract. The basic concepts for modelling wave propagation in solids with microstructure
are described. It is shown that the Green method, based on postulating the potential energy
function, has certain advantages compared with the widely used Cauchy method, which
postulates directly the stress-strain relations. Simple examples demonstrate how the Green
method together with internal variables permits to determine the microstress and the interactive
force between the constituents of solids. The structure of governing equations and possible
physical effects captured by such modelling are described. The microstress and interactive
force lead to the dispersion of waves at the macrolevel.
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1. INTRODUCTION

In engineering, the strength of materials is the most important feature for
design of reliable structures. That is why the governing stress–strain relation must
be determined with sufficient accuracy. The classical theories are based on the
assumption of homogeneity of materials and this assumption has been justified
for many applications. The contemporary technology is, however, characterized
by the wide usage of alloys, polycrystalline solids, composites, functionally
graded materials, etc. All these materials have an inherent internal structure –
microstructure – at smaller scales. The question is how to take such a micro-
structure into account and how it affects the behaviour at the macroscale.
In statics, homogenization methods allow to establish the averaged material
characteristics, needed for design following the classical theories. On the other
hand, dynamical loading is often characterized by high-frequency excitations. In
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this case, wavelengths of excitations may be comparable with characteristic scales
of embedded microstructure(s). It is obvious that then the homogenization methods
are not applicable because the fluctuations at microscale may affect the behaviour at
the macroscale. This leads to the need to derive physically well-grounded methods
for the description of material properties. For an engineer, the important question
is: how does the stress-strain relation reflect the material properties and what are
the consequences of this.

In this paper, the ideas of mathematical modelling of stress fields and deforma-
tion waves in microstructured solids are briefly described. First, it is argued
that the Green approach, which starts from a function of potential energy, has
some preferences compared with the Cauchy approach, based on proposing a
suitable stress–strain relation. Mathematical models are then derived by using
balance laws, introducing internal variables for capturing the effects of the internal
structure of solids. For the sake of transparency, the modelling is described in
the one-dimensional setting. The focal point of the paper is devoted to physical
effects, which can be described by derived mathematical models. These effects
(both qualitative and quantitative) can be used in nondestructive testing (NDT) of
material characteristics.

2. GREEN OR CAUCHY?

Given the balance laws (of mass, momentum and energy) in continuum
mechanics, the crucial problem for an engineer is: how to describe (or derive)
the stress–strain relations. In other words, the question can be formulated as
follows: how to determine the constitutive equations? For solving this problem, two
methods are available [1]: the Green method and the Cauchy method. According
to the Green method, the potential (free) energy is assumed to be a function
of the strain and the stress–strain relation is followed from the potential energy.
According to the Cauchy method, it is assumed that the stress is a function of
the strain, determined experimentally. Both methods haven certain advantages and
disadvantages when compared with each other.

Let us envisage briefly the essence of both methods. For the sake of simplicity,
rectangular Lagrange coordinates are used within the framework of the theory of
elasticity [2]. The potential energy W in the Green approach is assumed as a
general sufficiently regular function of the strain εij :

W = W (εij), (1)

where the strain tensor εij can be written as

εij =
1
2
(uj,i + ui,j + uk,i uk,j). (2)

Here ui is the displacement, indices run over 1, 2, 3 and the differentiation with
respect to the space coordinate xi is separated by comma. Then the stress tensor
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σij is calculated by

σij =
∂W

∂εij
. (3)

According to the Cauchy method, one has to postulate directly

σij = σij(εkl). (4)

In principle, there seems to be only a little difference between the two methods
and, consequently, between relations (3) and (4). However, the potential energy W
should be written in terms of invariants of eij in order to guarantee the material
invariance under a coordinate system rotations [1]. It is not obvious following
the Cauchy method. In addition, the potential energy W might involve also tem-
perature and then the generalization to thermoelastic problems is obvious. As we
see further, the potential energy W may be even a more complicated function with
a clear physical background and then the stress–strain relationship will reflect more
effects rather than strain only.

For the simplest one-dimensional elastic case, the potential energy is a
quadratic function of e11:

W =
1
2
(λ + 2µ)ε2

11, (5)

where λ and µ are Lamé parameters. Then for the linear case

σ11 = (λ + 2µ)ε11 = (λ + 2µ)u1,1, (6)

where we recognize the widely used case in engineering.
It has been stressed [1] that the elastic constants in Eq. (2) are directly related

to the energy function whereas the relation of elastic constants of Eq. (4) to the
energy W is unclear. It is also shown [1] that it is easier to satisfy the conditions of
objectivity and material invariance for the Green method while the Cauchy method
has found more usage for dissipative systems [3].

In order to derive constitutive equations for microstructured solids, one should
have a clear understanding about the internal structure of such solids and forces
between the constituents. In this case, the Green method could have a clear
advantage before the Cauchy method, because at the energy level it is easier
to guarantee stability of the energy function and thermodynamic consistency, if
needed. Proposing a stress–strain function directly like it is done by the Cauchy
method, it will be more like a guessing exercise. Most of the studies, related
to microstructured solids, follow the Green method for deriving the governing
equations [4−6].
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3. MICROSTRUCTURE MODELLING

Our attention is focused to microstructured solids. One can certainly imagine
that at the molecular level a solid might be composed by different particles and one
should know the forces between the particles in order to derive governing equations.
Such a discrete approach will involve a large system of equations and usually this
system is brought to a continuum limit [7]. However, the question how the forces
at the molecular level can be treated at the continuum limit, is difficult to answer.
That is why the modelling usually starts from the viewpoint of continua. As far
as conventional continuum mechanics is based on the assumption of homogeneity,
the generalized continuum theories are proposed which incorporate the properties
of the microstructure into the governing equations [4−6,8]. The balance laws
for macro- and microstructures can be formulated separately [4,5] or all macro-
and microstructural effects can be introduced in one set of balance laws. The
last approach reflects very clearly the structure of the solid with corresponding
forces, caused by the internal structure. Moreover, it is easy to generalize this
idea introducing the internal variables into modelling. The concise overview on
generalized continuum mechanics is given in [9].

We shall demonstrate now the main stages of the modelling of wave pro-
pagation in microstructure solids. For the sake of simplicity, we focus on
one-dimensional problems only. The full three-dimensional theory is presented
in [10,11].

3.1. Mindlin’s microelasticity

To describe the influence of a microstucture on the macromotion, we need to
take into consideration a new variable: microdeformation. The microdeformation
is treated as an internal degree of freedom. According to Mindlin [5], macro-
displacement is denoted by u = u1 and microdeformation – by ϕ. Then the kinetic
and potential energies are governed by following expressions,

K =
1
2
ρu2

t +
1
2
Iϕ2

t , (7)

W =
1
2
(λ + 2µ)u2

x + Auxϕ +
1
2
Bϕ2 +

1
2
Cϕ2

x, (8)

respectively. Here ρ is the macrodensity, I is the microinertia, and the indices x
and t denote differentiation. The material parameters A,B, and C characterize the
given microstructured solid. The corresponding Euler–Lagrange equations in terms
of the Lagrangian L = K −W are

(
∂L
∂ut

)

t

+
(

∂L
∂ux

)

x

− ∂L
∂u

= 0, (9)
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(
∂L
∂ϕt

)

t

+
(

∂L
∂ϕx

)

x

− ∂L
∂ϕ

= 0. (10)

Introducing Eqs (7), (8) into system of equations (9), (10), we obtain

ρutt −
(

∂W

∂ux

)

x

= 0, (11)

Iϕtt −
(

∂W

∂ϕx

)

x

+
∂W

∂ϕ
= 0. (12)

Here we recognize

σ =
∂W

∂ux
= (λ + 2µ)ux + Aϕ, (13)

η =
∂W

∂ϕx
= Cϕx, (14)

τ =
∂W

∂ϕ
= Aux + Bϕ, (15)

where σ is the macrostress (Piola–Kirchhoff stress), η is the microstress and τ is the
interactive force. Clearly (λ+2µ) is the longitudinal modulus, C is the microstress
modulus, A describes coupling effects and B – the strength of the interactive force.
Compared with the simplest case of a homogeneous solid (see Eq. (6)) the situation
is much more complicated but physically clear.

The governing system of equations derived from Eqs (11), (12), is the
following:

ρ utt = (λ + 2µ)uxx + Aϕx, (16)

I ϕtt = Cϕxx −Aux −Bϕ. (17)

If there is no coupling between macro- and microstructure then A = 0 and

ρ utt = (λ + 2µ)uxx, (18)

I ϕtt = Cϕxx −Bϕ, (19)

i.e. two uncoupled equations of motion yield.
The coupling in system of equations (16), (17) means that the micro- and

macromotion interact with each other. This model of microstructure is called
micromorphic. It suggests the knowledge of the values of materials parameters
A,B, C, and I , as well as boundary conditions both for the macrodisplacement
and for the microdeformation. The latter is the most disputed problem, which is
still under question.
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3.2. Dual internal variables

A more general description of the internal structure of a continuum can be
achieved by introducing dual internal variables. Contrary to observable variables
(like measurable strain, for example), the internal variables are “measurable but
not controllable” [12] and give insight about the integrally distributed effect of
a microstructure within a solid [13]. In the dual internal variables approach,
one internal variable permits to model the rate of changing of another internal
variable [14].

We start with the balance of pseudomomentum [15] within the material
formulation. Multiplying Eq. (18) by ux we then check that Eq. (18) yields the
following material balance of momentum

dP
dt

− ∂b

∂x
= f int + f inh, (20)

where the material momentum P , the material Eshelby stress b, the material
inhomogeneity force f inh, and the material internal force f int are defined by [15]

P := −ρ0utux, (21)

b := − (
ρ0u

2
t /2−W + σε

)
, (22)

f inh :=
(

1
2
ut

2

)
∂ρ0

∂x
− ∂W

∂x

∣∣∣∣
expl

, (23)

f int := σuxx − ∂W

∂x

∣∣∣∣
impl

. (24)

Here the subscript notations expl and impl mean, respectively, the derivative
keeping the fields fixed (and thus extracting the explicit dependence on x), and
taking the derivative only through the fields present in the function.

In addition, the dissipation inequality reads in the isothermal case

−Wt + σεt ≥ 0, (25)

where σ is the Piola–Kirchhoff stress tensor. The advantage of Eq. (20) compared
with the conventional balance laws is that the r.h.s. is clearly formulated in terms of
forces within the solid and allows to describe better the effects of microstructure.

If we use the concept of dual internal variables, then there is an important
difference compared with theories derived by Mindlin [5] or Eringen [8]. Instead
of two separate balance laws for the macro- and microstructure, only one balance
law (20) is at our disposal. The governing equation for the internal variable(s)
is derived from dissipation inequality (25). In this way, the advantages of using
potential energy and the dissipation inequality as an energy constraint, are clearly
taken into account.
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As an example, let the potential energy W = W (ux, ϕ, ψ) be represented by

W =
1
2

(λ + 2µ) u2
x + Auxϕ +

1
2
B ϕ2 +

1
2

C ϕ2
x +

1
2

D ψ2, (26)

where ϕ and ψ are internal variables and A,B, C, D are constants. Then the
balance law for linear momentum yields

ρutt = (λ + 2µ) u2
xx + Aϕx. (27)

As before, we have
σ = (λ + 2µ) ux + Aϕ, (28)

η = Cϕx, (29)

τ = Aux + Bϕ, (30)

ξ =
∂W

∂ψ
= Dψ. (31)

Dissipation inequality (25) yields

(τ − ηx)ϕt + (ξ − ζx)ψt ≥ 0, (32)

where ζ = ∂W/∂ϕx. It is clear that in the non-dissipative case dissipation
inequality (32) can by satisfied by the choice

ϕt = R(ξ − ζx), ψt = −R(τ − ηx), (33)

where R is a constant. Finally, from Eqs (33) we obtain

Iϕtt = Cϕxx −Aux −Bϕ, (34)

where I = 1/(R2D). Note that here ζ = 0. Evidently, systems of equations (16),
(17), and (27), (34) look like equivalent. However, in the case of dual internal
variables there exist natural boundary conditions following from the condition of
zero extra entropy flux at boundaries.

There are several theories proposed for enlarging the concepts of micro-
structured continua [16,17]. It is shown that many so-called gradient theories can
be derived by using the concept of dual internal variables [18].

3.3. Further generalizations

Certain materials (e.g., biomaterials) are essentially nonlinear. It is straight-
forward to introduce also physical nonlinearities at macro- and microscale in the
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framework of dual internal variables. For this the potential energy W should also
include the following terms:

1
6
Nu3

x +
1
6
Mϕ3

x, (35)

where coefficients N and M are responsible for the nonlinearity in macro- and
microscale, respectively. In this case, the final governing equations (cf. Eqs (16),
(17)) are the following [19]:

ρutt = (λ + 2µ)uxx + Aϕx + Nuxuxx, (36)

Iϕtt = Cϕxx −Aux −Bϕ + Mϕxϕxx. (37)

This system of equations describes wave propagation in nonlinear microstructured
solids.

In many practical applications the microstructure has also multiple scales – they
could be hierarchically ordered (a scale within a scale) or concurrent (same scale
but different properties). It is possible to use the same procedure [20] for deriving
the governing equations. For example, in the hierarchical case, the potential energy
is written as

W =
1
2

(λ + 2µ) u2
x + A1ϕ1ux +

1
2
B1ϕ

2
1 +

1
2

C1(ϕ1)2x + A12(ϕ1)xϕ2

+
1
2

B2ϕ
2
2 +

1
2

C2(ϕ2)2x, (38)

where ϕ1 and ϕ2 are internal variables (microdeformations), and
A1, B1, C1, A12, B2, C2 are material parameters. Then we obtain the following
governing equations:

ρutt = (λ + 2µ)uxx + A1(ϕ1)x, (39)

I1 (ϕ1)tt = C1(ϕ1)xx −A1ux −Bϕ1, (40)

I2 (ϕ2)tt = C2(ϕ2)xx −A12(ϕ1)x −B2ϕ2. (41)

The detailed analysis of this model is given in [21].
Finally, it is also possible to use the same approach for deriving the governing

equations for the thermoelasticity where the microtemperature (temperature
fluctuation due to microstructure) is taken into account [22,23].

3.4. Main features of the models

System of Eqs (16), (17) or other models derived above involve coupling
between macro- and microstructure. In order to understand the effects of coupling,
one should introduce a scale parameter δ, which is the ratio of the characteristic
scale of a microstructure and the wavelength of the excitation.
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First, let us note that system of Eqs (16), (17) can be represented in the form
of a single equation by replacing the system of two second-order equations by one
fourth-order equation in terms of macrodisplacement u [24]:

utt =
(
c2
0 − c2

A

)
uxx − p2

(
utt − c2

0 uxx

)
tt

+ p2c2
1

(
utt − c2

0 uxx

)
xx

, (42)

where c2
0 = (λ + 2µ)/ρ, c2

1 = C/I, c2
A = A2/ρB and p2 = I/B. The velocities

c0, c1 and cA characterize the macromotion, the microstructure, and the slowing
down effect due to the microstructure, respectively.

Further on, let us introduce dimensionless variables

U = u/Uo, X = x/L, T = c0t/L, δ = l2/L2, ε = U0/L, (43)

where U0 and L are the amplitude and the wavelength of an excitation and l is a
characteristic scale of the microstructure. We also suppose that I = ρl2I∗, C =
l2C∗, where I∗ is dimensionless and C∗ has the dimension of stress. By an
asymptotic analysis [19] we get in the first approximation

UTT =
(

1− c2
A

c2
0

)
UXX +

c2
A

c2
B

(
UTT − c2

1

c2
0

UXX

)

XX

, (44)

where c2
B = BL2/I . The scale parameter δ is involved in the ratio of velocities

c2
A

c2
B

= δI∗
A2

B2
. (45)

Equation (44) exhibits directly the hierarchical nature of wave propagation in
microstructured solids in the spirit of Whitham [25]:
– if c2

A/c2
B is small then waves are governed by the properties of the macro-

structure;
– if c2

A/c2
B is large then waves “feel” more the properties of the microstructure.

Note that in absence of the interaction between macro- and microstructure
(A = 0, which means also cA = 0) the governing wave operator is simply the
classical UTT − UXX . Another important feature is that even for small values of
A, the velocity of waves at macroscale is influenced by the coupling (see Eq. (44)).
This effect is also demonstrated by direct numerical analysis [26].

The presence of the microstructure leads to the dispersion of waves. This is
explicitly seen from Eq. (44) where the influence of the microstructure is described
by the second derivative of the wave operator

UTT − c2
1/c2

0 UXX , (46)

i.e. the fourth-order derivatives UTTXX and UXXXX govern the dispersion effects.
The dispersion analysis for the derived model is represented in several

studies [18,19,24,27]. From the results of the dispersion analysis it is worth to
mention the following:
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– the character of dispersion (normal or anomal) is studied [27];
– both boundary and initial value problems are analysed [27];
– the dispersion properties for different models are compared [28];
– the role of parameters, which govern the waves in microstructured solids, is

demonstrated [29].
Another important feature to be understood is the possible balance of dispersion

and nonlinear effects in microstructured solids. It is well known that this balance
can lead to the emergence of solitary waves. In contrast with the celebrated
evolution equations like the Korteweg–de Vries (KdV) equation, the leading terms
are here (cf. Eq. (44)) of the second order. This means that the governing equations
are of the Boussinesq type [30,31]. The analysis of waves, based on derived
mathematical models, demonstrates clearly the existence of solitary waves and the
emergence of strains of solitary pulses [32,33].

If the KdV equation models the emergence of soliton trains in one direction
only then the Boussinesq-type equation models the emergence of trains of solitary
pulses in two directions [33]. Moreover, the influence of nonlinearities at the
microlevel leads to the asymmetry of a solitary wave. It is certainly possible to
derive an evolution equation from the second-order system. In this case the results
is a modified KdV-type equation, which in the standardized form reads [34]

qt + 6qqx + qxxx + 3k(q2
x)xx = 0, (47)

where q is related to deformation at the macroscale. Equation (47) exhibits the
trend to asymmetry due to the last term in it but the inertial and elastic properties
of the microstructure are described by one term (qxxx) only.

4. FINAL REMARKS

This brief review summarizes recent results in studies on modelling of wave
propagation in microstructured solids. It is clear that the proper modelling is a basis
for engineering calculations. However, the description of coupling between macro-
and microstructure together with inertial and elastic properties of the microstructure
needs more physical parameters than in case of traditional homogeneous solids.
Fortunately, the existence of microstructure means also additional measurable
effects on the macroscale. This leads to the possibility to elaborate algorithms
for nondestructive testing (NDT) of material properties. Mathematically it means
solving the inverse problems – once we know the system with the accuracy of
parameters then given the initial (boundary) values and the measured effects one
can determine the parameters of the system. For one-dimensional problems several
NDT algorithms are presented in the monograph [35].

These algorithms are based on the dispersion analysis and elaborated for
harmonic waves and wave packets. In addition, a novel method is proposed to
use solitary waves in the NDT. In this case, nonlinear effects are taken into account
like asymmetry of a wave which increases during the propagation.
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Further studies on modelling of waves in microstructured solids are in progress,
involving thermoelastic waves, two-dimensional problems, etc.

ACKNOWLEDGEMENTS

The research was supported by the EU through the European Regional
Development Fund and by the Estonian Ministry of Education and Research
(SF 0140077s08) and by the Estonian Science Foundation (grant No. 8702).
Authors would like to thank all their co-authors for cooperation.

REFERENCES

1. Eringen, A. C. and Suhubi, E. S. Nonlinear Theory of Continuous Media. McGraw Hill,
New York, 1962.

2. Bland, D. R. Nonlinear Dynamics Elasticity. Blaisdell, Waltham MA, 1969.
3. Haupt, P. Continuum Mechanics and Theory of Materials. Springer, Berlin, 2002.
4. Eringen, A. C. and Suhubi, E. S. Nonlinear theory of simple microelastic solids I & II.

Int. J. Eng. Sci., 1964, 2, 189–203, 389–404.
5. Mindlin, R. D. Microstructure in linear elasticity. Arch. Rat. Mech. Anal., 1964, 16, 51–78.
6. Capriz, G. Continua with Microstructure. Springer, New York, 1989.
7. Maugin, G. A. Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford,

1999.
8. Eringen, A. C. Microcontinuum Field Theories. I Foundations and Solids. Springer, New

York, 1999.
9. Maugin, G. A. A historical perspective of generalized continuum mechanics. In Mechanics

of Generalized Continua (Altenbach, H. et al., eds). Springer, Berlin, 2011, 3–19.
10. Berezovski, A., Engelbrecht, J. and Maugin, G. A. Generalized thermomechanics with

internal variables. Arch. Appl. Mech., 2011, 81, 229–240.
11. Engelbrecht, J. and Berezovski, A. Internal structures and internal variables in solids.

J. Mech. Mater. Struct., 2012, 7, 983–996.
12. Kestin, J. Internal variables in the local-equilibrium approximation. J. Non-Equilibr.

Thermodyn., 1993, 18, 360–379.
13. Maugin, G. A. and Muschik, W. Thermodynamics with internal variables I: General

concepts. J. Non-Equilib. Thermodyn., 1994, 19, 217–249.
14. Ván, P., Berezovski, A. and Engelbrecht, J. Internal variables and dynamic degrees of

freedom. J. Non-Equilib. Thermodyn., 2008, 33, 235–254.
15. Maugin, G. A. Material Inhomogeneities in Elasticity. Chapman and Hall, London, 1993.
16. Askes, H. and Metrikine, A. V. One-dimensional dynamically consistent gradient elasticity

models derived from a discrete microstructure. Part I: Generic formulation. Eur. J.
Mech. A/Solids, 2002, 21, 555–572.

17. Papargyri-Beskou, S., Polyzos, D. and Beskos, D. E. Wave dispersion in gradient elastic
solids and structures: A unified treatment. Int. J. Solids Struct., 2009, 16, 3751–3759.

18. Berezovski, A., Engelbrecht, J. and Berezovski, M. Waves in microstructured solids: a
unified view point of modelling. Acta Mech., 2011, 220, 349–363.

19. Engelbrecht, J., Pastrone, F., Braun, M. and Berezovski, A. Hierarchies of waves in
nonclassical materials. In Universality in Nonclassical Nonlinearity (Delsanto, P.-P.,
ed.). Springer, New York, 2007, 29–47.

20. Berezovski, A., Engelbrecht, J. and Peets, T. Multiscale modeling of microstructured
solids. Mech. Res. Comm., 2010, 37, 531–534.

181



21. Berezovski, A., Berezovski, M. and Engelbrecht, J. Two-scale microstructure dynamics.
J. Multiscale Modelling, 2011, 3, 177–188.

22. Berezovski, A., Engelbrecht, J. and Maugin, G. A. Thermoelasticity with dual internal
variables. J. Thermal Stresses, 2011, 34, 413–430.

23. Berezovski, A. and Engelbrecht, J. Waves in microstructured solids: dispersion and
thermal effects. In Proc. 23rd International Congress of Theoretical and Applied
Mechanics (Bai, Y., Wang, J. and Fang, D., eds). Beijing, China, 2012, SM07-005.

24. Engelbrecht, J., Berezovski, A., Pastrone, F. and Braun, M. Waves in microstructured
materials and dispersion. Phil. Mag., 2005, 85, 4127–4141.

25. Whitham, G. B. Linear and Nonlinear Waves. J. Wiley, New York, 1974.
26. Berezovski, M., Berezovski, A. and Engelbrecht, J. Waves in materials with micro-

structure: numerical simulation. Proc. Estonian Acad. Sci., 2010, 59, 99–107.
27. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T. and Berezovski, M.

Dispersive waves in microstructured solids. Int. J. Solids Struct., 2013, 50, 1981–
1990.

28. Peets, T., Randrüüt, M. and Engelbrecht, J. On modelling dispersion in microstructured
solids. Wave Motion, 2008, 45, 471–480.

29. Engelbrecht, J., Peets, T., Tamm, K. and Salupere, A. Deformation waves in micro-
structured solids and dimensionless parameters. Proc. Estonian Acad. Sci., 2013, 62,
109–115.

30. Christov, C., Maugin, G. A. and Porubov, A. On Boussinesq’s paradigm in nonlinear wave
motion. C.R.Mécanique, 2007, 335, 521–535.

31. Berezovski, A., Engelbrecht, J. and Berezovski, M. Dispersive wave equations for solids
with microstructure. In Vibration Problems – ICOVP 2011: The 10th International
Conference on Vibration Problems (Naprstek, J. et al., eds). Springer, 2011, 699–705.

32. Engelbrecht, J., Berezovski, A. and Salupere, A. Nonlinear deformation waves in solids
and dispersion. Wave Motion, 2007, 44, 493–500.

33. Engelbrecht, J., Salupere, A. and Tamm, K. Waves in microstructured solids and the
Boussinesq paradigm. Wave Motion, 2011, 48, 717–726.

34. Randrüüt, M. and Braun, M. On one-dimensional waves in microstructured solids. Wave
Motion, 2010, 47, 217–230.

35. Janno, J. and Engelbrecht, J. Microstructured Materials: Inverse Problems. Springer,
Berlin, 2011.

Lainelevi modelleerimisest mikrostruktuuriga tahkistes
Jüri Engelbrecht ja Arkadi Berezovski

Materjalide mikrostruktuurist põhjustatud efektid peavad olema piisava täp-
susega kirjeldatud ka lainelevi matemaatilistes mudelites. Inseneri seisukohalt
on oluline täpsustada pinge ja deformatsiooni vahelist seost (nn olekuvõrrandit).
Artiklis on analüüsitud Greeni ja Cauchy meetodeid olekuvõrrandite tuletamiseks
ning kirjeldatud energeetilistel tingimustel põhineva Greeni meetodi eeliseid. On
näidatud, kuidas sisemuutujate abil on võimalik makropingete kõrval määrata
ka mikropingeid ja interaktiivseid jõude mikrostruktuuriga tahkiste dünaamilisel
koormamisel. Selliselt konstrueeritud liikumisvõrrandites ilmneb dispersiooni
oluline roll lainelevi protsessides taolistes materjalides.
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