1. Besterci, M. Dispersion Strengthened Aluminium Prepared by Mechanical Alloying. Cambridge Int. Sci. Publ., Chichester, 1999.
2. Fecht, H. J. Nanostructure formation by mechanical attrition. NanoStructured Mater., 1995, 6, 33–42.
doi:10.1016/0965-9773(95)00027-5
3. Viljus, M. The microstructure and properties of fine-grained cermet. PhD Thesis, Centre for Materials Research, Faculty of Science, Tallinn University of Technology, 2003.
4. Thiessen, K. P. and Sieber, K. Energetische Randbedingungen tribochemischer Prozesse. Zeitschr. Physik. Chemie, 1979, Teil I-III, 260, 403–422.
5. Benjamin, J. S. Mechanical alloying. Scientific American, 1976, 234, 40–48.
doi:10.1038/scientificamerican0576-40
6. Schafer, G. B. and McCormick, P. G. Mechanical alloying. Materials Forum, 1992, 16, 91–97.
7. Schafer, G. B. and McCormick, P. G. On the kinetics of mechanical alloying. Metallurg. Trans. A, 1992, 23A, 1285–1290.
doi:10.1007/BF02665060
8. Koch, C. C. Synthesis of nanostructured materials by mechanical milling: problems and opportunities. NanoStructured Mater., 1997, 9, 13–22.
doi:10.1016/S0965-9773(97)00014-7
9. Jangg, G., Kutner, F. and Korb, G. Herstellung und Eigenschaften von dispersionsgehärteten Aluminium. Aluminium, 1975, 51, 641–645.
10. Besterci, M. Dispersion-strengthened aluminium prepared by mechanical alloying. Int. J. Mater. Prod. Technol., 2000, 15, 356–408.
11. Korb, G., Jangg, G. and Kutner, F. Mechanism der dispersionsverfestigten Al-Al4C3 Werkstoffen. Draht, 1979, 5, 318–324.
12. Lucas, G. E. Review of small specimen test technique for irradiation testing. Metall. Trans., 1990, 21A, 1105–1119.
13. Baik, J. M., Kameda, J. and Buck, O. Small punch test evaluation of intergranular embrittlement of an alloy steel. Scripta Metall., 1983, 17, 1443–1447.
doi:10.1016/0036-9748(83)90373-3
14. Orlová, A., Kuchařová, K., Čadek, J. and Besterci, M. Creep dosperzně spevněného hliniku. Kovové Mater., 1986, 24, 505–529.
15. Monkman, F. C. and Grant, N. J. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. ASTM, 1956, 56, 593–605.
16. Ule, B., Šustar, T., Dobeš, F., Milička, K., Bicego, V., Tettamanti, S., Maile, K., Schwarzkopf, C., Whelan, M. P., Kozlowski, R. H. and Klaput, J. Small punch test method assessment for the determination of the residual creep, life of service exposed components – outcomes from an interlaboratory exercise. Nuclear Eng. Design, 1999, 192, 1–11.
doi:10.1016/S0029-5493(99)00039-4
17. Dobeš, F., Milička, K., Ule, B., Šustar, T., Bicego, V., Tettamanti, S., Kozlowski, R. H., Klaput, J., Whelan, M. P., Maile, K. and Schwarzkopf, C. Miniaturised disk-bend creep test of heat-resistant steels at elevated temperatures. Eng. Mech., 1998, 5, 157–160.
18. Li, Y. and Langdon, T. G. A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites. Acta Mater., 1999, 47, 3395–3403.
doi:10.1016/S1359-6454(99)00219-0
19. Abendroth, M. and Kuna, M. Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks. Comput. Mater. Sci., 2003, 28, 633–644.
doi:10.1016/j.commatsci.2003.08.031
20. Campitelli, E. N., Spätig, P., Bonadé, R., Hoffelner, W. and Victoria, M. Assessment of the constitutive properties from small ball punch test: experiment and modelling. J. Nuclear Mater., 2004, 335, 366–378.
doi:10.1016/j.jnucmat.2004.07.052
21. Evans, R. W. and Evans, M. Numerical modelling the small disk creep test. Mater. Sci. Technol., 2006, 22, 1155–1162.
doi:10.1179/174328406X118258
22. Lippmann, H. Mechanik des plastischen Fliessens. Springer-Verlag, Berlin, 1981.
23. Timoshenko, S. Strength of Materials. 3rd ed. Mc-Graw-Hill, New York, 1957.
24. Dobeš, F. and Milička, K. Small punch testing in creep conditions. J. Test. Eval., 2001, 29, 31–35.doi:10.1520/JTE12388J