Trypanites is a common boring in Ordovician hardgrounds of Estonia (Baltica). The depth of the sedimentary basin and sedimentation rates controlled the distribution of Trypanites. The trace-makers’ community was diverse and changing over time. Three ichnospecies of Trypanites can be distinguished: T. sozialis, T. weisei and Trypanites isp. All three morphotypes can be recognized in the same hardground. It is impossible to distinguish between the different ichnospecies based only on the size of the boring aperture. The depth of early lithification of the seafloor determines the morphological variability seen in T. sozialis. The occurrence of elongated borings, such as T. weisei and Trypanites isp., is related to tropical environments, and their trace-makers strongly preferred substrates with a homogeneous and dense texture. The texture and available volume of hard substrate controls the ichnodiversity of Trypanites ichnospecies.
Christ, N., Immenhauser, A., Wood, R., Darwich, K. and Niedermayr, A. 2015. Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds. Earth-Science Reviews, 151, 176–226.
https://doi.org/10.1016/j.earscirev.2015.10.002
Cole, A. R. and Palmer, T. J. 1999. Middle Jurassic worm borings, and a new giant ichnospecies of Trypanites from the Bajocian/ Dinantian unconformity, southern England. Proceedings of the Geologists’ Association, 110(3), 203–209.
https://doi.org/10.1016/S0016-7878(99)80070-4
Dronov, A. and Rozhnov, S. 2007. Climatic changes in the Baltoscandian basin during the Ordovician: Sedimentological and palaeontological aspects. Acta Geologica Sinica, 46, 108–113.
Eisenack, A. 1934. Über Bohrlöcher in Geröllen baltischer Obersilurgeschiebe (On borings in Baltic Upper Silurian erratic boulders). Zeitschrift für Geschiebeforschung, 10, 89–94.
Flügel, E. 2010. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Springer, Berlin, Heidelberg, New York.
https://doi.org/10.1007/978-3-642-03796-2
Hagenow, H. F. 1840. Monographie der Rügen’schen Kreide-Versteinerungen, II. Abtheilung: Radiarien und Annulaten. Nebst Nachträgen zur ersten Abtheilung (Monograph of the Cretaceous fossils of Rügen, Part II: radiaries and annulates. In addition supplements to the first part). Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1839, 630–672.
Jaanusson, V. 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia, 6(1), 11–34.
https://doi.org/10.1111/j.1502-3931.1973.tb00871.x
Knaust, D., Dronov, A. V. and Toom, U. 2023. Two almost-forgotten Trypanites ichnospecies names for the most common Palaeozoic macroboring. Papers in Palaeontology, 9(3), e1491.
https://doi.org/10.1002/spp2.1491
Kobluk, D. R. and Nemcsok, S. 1982. The macroboring ichnofossil Trypanites in colonies of the Middle Ordovician bryozoan Prasopora: population behaviour and reaction to environmental influences. Canadian Journal of Earth Sciences, 19, 679–688.
https://doi.org/10.1139/e82-057
Kočová Veselská, M., Kočí, T., Jäger, M., Mikuláš, R., Heřmanová, Z., Morel, N. et al. 2021. Sclerobionts on tubes of the serpulid Pyrgopolon (Pyrgopolon) deforme (Lamarck, 1818) from the upper Cenomanian of Le Mans region, France. Cretaceous Research, 125, 10487.
https://doi.org/10.1016/j.cretres.2021.104873
Mägdefrau, K. 1932. Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena (On some borings from the Lower Muschelkalk of Jena). Paläontologische Zeitschrift, 14, 150–160.
https://doi.org/10.1007/BF03041628
Nestor, H. and Einasto, R. 1997. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (Raukas, A. and Teedumäe, A., eds). Estonian Academy Publishers, Tallinn, 192–204.
Neumann, C., Wisshak, M. and Bromley, R. G. 2008. Boring a mobile domicile: an alternative to the conchiculous life habit. In Current Developments in Bioerosion (Wisshak, M. and Tapanila, L., eds). Springer, Berlin, Heidelberg, 307–327.
https://doi.org/10.1007/978-3-540-77598-0_16
Nield, E. W. 1984. The boring of Silurian stromatoporoids – towards an understanding of larval behaviour in the Trypanites organism. Palaeogeography, Palaeoclimatology, Palaeoecology, 48(2–4), 229–243.
https://doi.org/10.1016/0031-0182(84)90046-4
Palmer, T. J. and Wilson, M. A. 2004. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37(4), 417–427.
https://doi.org/10.1080/00241160410002135
Põlma, L. 1982. Сравнительная литология карбонатных пород ордовика Северной и Средней Прибалтики (Comparative Lithology of the Ordovician Carbonate Rocks in the Northern and Middle East Baltic). Valgus, Tallinn.
Rozhnov, S. V. 2018. Hardgrounds of the Ordovician Baltic Paleobasin as a distinct type of sedimentation induced by cyanobacterial mats. Paleontological Journal, 52(10), 1098–1113.
https://doi.org/10.1134/S0031030118100118
Saadre, T. 1992. Distribution pattern of the discontinuity surfaces in the Middle Ordovician, North Estonia. In WOGOGOB: Oslo ’92: Excursions, 19–20 August (Bruton, D. L., ed.). Oslo, 25–26.
Toom, U. 2019. Ordovician and Silurian trace fossils of Estonia. PhD thesis. Tallinn University of Technology, Estonia.
Wisshak, M., Neumann, C., Knaust, D. and Reich, M. 2017. Rediscovery of type material of the bioerosional trace fossil Talpina von Hagenow, 1840 and its ichnotaxonomic implications. Paläontologische Zeitschrift, 91(1), 127–135.
https://doi.org/10.1007/s12542-017-0335-y