ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Stratigraphy and facies differences of the Middle Darriwilian Isotopic Carbon Excursion (MDICE) in Baltoscandia; pp. 214–222

Full article in PDF format | 10.3176/earth.2020.16

Authors
Leho Ainsaar, Oive Tinn, Andrei V. Dronov, Enli Kiipli, Sigitas Radzevičius, Tõnu Meidla

Abstract

The Middle Darriwilian Isotopic Carbon Excursion (MDICE) is a global isotopic event described in sections from different palaeocontinents. Here we present new stable carbon isotopic data from carbonates of ten sections in different parts of the Baltoscandian Palaeobasin (Estonia, Latvia, Lithuania, Sweden, NW Russia). The definition of the MDICE as a chemostratigraphic unit is discussed, as well as the subdivision of its peak into two distinct peaks. The MDICE is one of the longest carbon isotopic events in the Palaeozoic. It was preceded by the L-chondritic cosmic dust flow event, which may have been responsible for cooling through the Darriwilian and the initiation of the Great Ordovician Biodiversification Event. High-resolution chemostratigraphic analyses show that the time interval between these environmental events and the base of the MDICE is up to one million years. Due to the long duration of the MDICE the modelling of this excursion should address more complex scenarios than a simple response of the carbon cycle to rapid climatic perturbations.


References

Ainsaar, L. & Meidla, T. 2016. Middle Darriwilian Isotopic Carbon Excursion (MDICE) in Baltoscandia as response for global changes. In International Geoscience Pro­gramme Project 591 – Closing Meeting, The Early to Middle Paleozoic Revolution, Ghent University, Belgium, 69 July 2016. Abstracts(Gurdebeke, P., De Weirdt, J., Vandenbroucke, T. R. A. & Cramer, B. D., eds), p. 20. Ghent University, Ghent.

Ainsaar, L., Meidla, T. & Tinn, O. 2004. Middle and Upper Ordovician stable isotope stratigraphy across the facies belts in the East Baltic. In WOGOGOB-2004 Conference Materials (Hints, O. & Ainsaar, L., eds), pp. 11–12. Tartu University Press, Tartu.

Ainsaar, L., Meidla, T., Tinn, O., Martma, T. & Dronov, A. 2007. Darriwilian (Middle Ordovician) carbon isotope stra­tigraphy in Baltoscandia. Acta Palaeontologica Sinica46 (Suppl.), 1–8.

Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J. & Tinn, O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology294, 189–201.
https://doi.org/10.1016/j.palaeo.2010.01.003

Ainsaar, L., Männik, P., Dronov, A. V., Izokh, O. P., Meidla, T. & Tinn, O. 2015. Carbon isotope chemostratigraphy and conodonts of the Middle–Upper Ordovician succession in the Tungus Basin, Siberian Craton. Palaeoworld24, 123–135.
https://doi.org/10.1016/j.palwor.2015.03.002

Albanesi, G. L., Bergström, S. M., Schmitz, B., Serra, F., Feltes, N. A., Voldman, G. G. & Ortega, G. 2013. Darriwilian (Middle Ordovician) δ13Ccarbchemostratigraphy in the Precordillera of Argentina: Documentation of the middle Darriwilian Isotope Carbon Excursion (MDICE) and its use for intercontinental correlation. Palaeogeography, Palaeoclimatology, Palaeoecology389, 48–63.
https://doi.org/10.1016/j.palaeo.2013.02.028

Bang, S. & Lee, Y. I. 2020. Darriwilian carbon isotope stratigraphy in the Taebaeksan Basin, Korea and its implications for Middle Ordovician paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology541, 109534.
https://doi.org/10.1016/j.palaeo.2019.109534

Bauert, H., Ainsaar, L., Põldsaar, K. & Sepp, S. 2014. δ13C chemostratigraphy of the Middle and Upper Ordovician succession in the Tartu-453 drillcore, southern Estonia, and the significance of the HICE. Estonian Journal of Earth Sciences63, 195–200.
https://doi.org/10.3176/earth.2014.18

Bergström, S. M., Schmitz, B., Liu, H. P., Terfelt, F. & McKay, R. M. 2018. High-resolution δ13Corg chemostratigraphy links the Decorah impact structure and Winneshiek Konservat-Lagerstätte to the Darriwilian (Middle Ordovician) global peak influx of meteorites. Lethaia51, 504–512.
https://doi.org/10.1111/let.12269

Dickson, J. A. D., Wood, R. A., Bu Al Rougha, H. & Shebl, H. 2008. Sulphate reduction associated with hardgrounds: Lithification afterburn! Sedimentary Geology205, 34–39.
https://doi.org/10.1016/j.sedgeo.2008.01.005

Dronov, A. V. 2004. Razrez ordovikskikh otlozhenii Mishinogorskogo kar´yera [A section of Ordovician deposits of the Mishina Gora quarry]. In Ordovikskoe Plato. K 100-letiyu so dnya rozhdeniya B. P. Asatkina [Ordovician Plateau. On the 100 Years Anniversary of B. P. Asatkin] (Dronov, A. V., ed.), pp. 68–85. Voentechinizdat, Moscow [in Russian].

Dronov, A. 2005. Ordovician of St. Petersburg Region. In Cambrian and Ordovician of St. Petersburg Region. 6th Baltic Stratigraphical Conference, August 2325, 2005, Guidebook of the Pre-conference Field Trip (Dronov, A., Tolmacheva, T., Raevskaya, E. & Nestell, M., eds), pp. 5–9. Baltic Stratigraphic Association, St. Petersburg.

Dronov, A. & Rozhnov, S. 2007. Climatic changes in the Baltoscandian basin during the Ordovician: sedimentological and palaeontological aspects. Acta Palaeontologica Sinica46 (Suppl.), 108–113.

Dronov, A. V., Ainsaar, L., Kaljo, D., Meidla, T., Saadre, T. & Einasto, R. 2011. Ordovician of Baltoscandia: facies, sequences and sea-level changes. In Ordovician of the World (Gutierrez-Marco, J. C., Rabano, I. & Garcia-Bellido, D., eds), pp. 143–150. Instituto Geologico y Minero de España, Madrid.

Eriksson, M. E., Lindskog, A., Calner, M., Mellgren, J. I. S, Bergström, S. M., Terfelt, F. & Schmitz, B. 2012. Biotic dynamics and carbonate microfacies of the conspicuous Darriwilian (Middle Ordovician) ‘Täljsten’ interval, south-central Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology367–368, 89–103.
https://doi.org/10.1016/j.palaeo.2012.02.012

Harris, M. T., Sheehan, P. M., Ainsaar, L., Hints, L., Männik, P., Nõlvak, J. & Rubel, M. 2004. Upper Ordovician sequences of western Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology210, 135–148.
https://doi.org/10.1016/j.palaeo.2004.02.045

Holmden, C., Creaser, R. A., Muehlenbachs, K., Leslie, S. A. & Bergström, S. M. 1998. Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans: Implications for secular curves. Geology26, 567–570.
https://doi.org/10.1130/0091-7613(1998)026<0567:IEFGDB>2.3.CO;2

Jaanusson, V. 1976. Faunal dynamics in the Middle Ordovician (Viruan) of Balto-Scandia. In The Ordovician System: Proceedings of a Palaeontological Association Symposium, Birmingham, September 1974 (Bassett, M. G., ed.), pp. 301–326. University of Wales Press, Cardiff.

Jaanusson, V. & Mutvei, H. 1953. Stratigraphie und Lithologie der unterordovizischen Platyurus-Stufe im Siljan Gebiet, Dalarna. Bulletin of the Geological Institute of Uppsala35, 7–34.

Kaljo, D., Martma, T. & Saadre, T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology245, 138–155.
https://doi.org/10.1016/j.palaeo.2006.02.020

Komatsu, G., Coletta, A., Battagliere, M. & Virelli, M. 2019. Mishina Gora, Russia. In Encyclopedic Atlas of Terrestrial Impact Craters (Flamini, E., Di Martino, M. & Coletta, A., eds), pp. 183–184. Springer, Cham.
https://doi.org/10.1007/978-3-030-05451-9_44

Lehnert, O., Meinhold, G., Wu, R. C., Calner, M. & Joachimski, M. M. 2014. δ13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician) carbonate succession of the Siljan district, central Sweden. Estonian Journal of Earth Sciences63, 277–286.
https://doi.org/10.3176/earth.2014.31

Leslie, S. A., Saltzman, M. R., Bergström, S. M., Repetski, J. E., Howard, A. & Seward, A. M. 2011. Conodont biostratigraphy and stable isotope stratigraphy across the Ordovician Knox/Beekmantown unconformity in the Central Appalachians. In Ordovician of the World (Gutierrez-Marco, J. C., Rabano, I. & Garcia-Bellido, D., eds), pp. 301–308. Instituto Geologico y Minero de España, Madrid.

Lindskog, A., Costa, M. M., Rasmussen, C. M. Ø., Connelly, J. N. & Eriksson, M. E. 2017. Refined Ordovician timescale reveals no link between asteroid breakup and bio­diversification. Nature Communications8, 14066.
https://doi.org/10.1038/ncomms14066

Lindskog, A., Eriksson, M. E., Bergström, S. M. & Young, S. A. 2019. Lower–Middle Ordovician carbon and oxygen isotope chemostratigraphy at Hällekis, Sweden: implications for regional to global correlation and paleo- environmental development. Lethaia52, 204–219.
https://doi.org/10.1111/let.12307

Männil, R. & Meidla, T. 1994. The Ordovician System of the East European Platform (Estonia, Latvia, Lithuania, Byelorussia, parts of Russia, Ukraine and Moldova). In The Ordovician System of the East European Platform and Tuva (Southeastern Russia): Correlation Charts and Explanatory Notes (Webby, B. D., Ross, R. J. & Zhen, Y. Y., eds), IUGS Publication28, 1–52.

Meidla, T., Ainsaar, L. & Hints, O. 2014. The Ordovician System in Estonia. In 4th Annual Meeting of IGCP 591, Estonia, 1019 June 2014. Abstracts and Field Guide (Bauert, H., Hints, O., Meidla, T. & Männik, P., eds), pp. 116–122. Tartu.

Munnecke, A., Zhang, Y., Liu, X. & Cheng, J. 2011. Stable carbon isotope stratigraphy in the Ordovician of South China. Palaeogeography, Palaeoclimatology, Palaeoecology307, 17–43.
https://doi.org/10.1016/j.palaeo.2011.04.015

Nestor, H. & Einasto, R. 1997. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 192–204. Estonian Academy Publishers, Tallinn.

Nõlvak, J. & Grahn, Y. 1993. Ordovician chitinozoan zones of Baltoscandia. Review on Palaeobotany and Palynology79, 245–269.
https://doi.org/10.1016/0034-6667(93)90025-P

Panchuk, K. M., Holmden, C. E. & Leslie, S. A. 2006. Local controls on carbon cycling in the Ordovician midcontinent region of North America, with implications for carbon isotope secular curves. Journal of Sedimentary Research76, 200–211.
https://doi.org/10.2110/jsr.2006.017

Rasmussen, C. M. Ø., Ullmann, C. V., Jakobsen, K. G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M. E., Dronov, A., Frei, R., Korte, C., Nielsen, A. T. & Harper, D. A. T. 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports6, 18884.
https://doi.org/10.1038/srep18884

Saltzman, M. R. & Edwards, C. T. 2017. Gradients in the carbon isotopic composition of Ordovician shallow water carbonates: A potential pitfall in estimates of ancient CO2 and O2Earth and Planetary Science Letters464, 46–54.
https://doi.org/10.1016/j.epsl.2017.02.011

Schmitz, B., Harper, D. A. T., Peucker-Ehrenbrink, B., Stouge, S., Alwmark, C., Cronholm, A., Bergström, S. M., Tassinari, M. & Xiaofeng, W. F. 2008. Asteroid breakup linked to the Great Ordovician Biodiversification Event. Nature Geoscience1, 49–53.
https://doi.org/10.1038/ngeo.2007.37

Schmitz, B., Bergström, S. M. & Wang, X. F. 2010. The middle Darriwilian (Ordovician) δ13C excursion (MDICE) discovered in the Yangtze Platform succession in China: implications of its first recorded occurrences outside Baltoscandia. Journal of the Geological Society167, 249–259.
https://doi.org/10.1144/0016-76492009-080

Schmitz, B., Farley, K. A., Goderis, S., Heck, P. R., Bergström, S. M., Boschi, S., Claeys, P., Debaille, V., Dronov, A., van Ginneken, M., Harper, D. A. T, Iqbal, F., Friberg, J., Liao, S., Martin, E., Meier, M. M. M., Peucker-Ehrenbrink, B., Soens, B., Wieler, R. & Terfelt, F. 2019. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Science Advances5, eaax4184.
https://doi.org/10.1126/sciadv.aax4184

Trotter, J. A., Williams, I. S., Barnes, C. R., Lecuyer, C. & Nicoll, R. S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science321, 550–554.
https://doi.org/10.1126/science.1155814

Viira, V. & Männik, P. 1997. Conodonts. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 241–244. Estonian Academy Publishers, Tallinn.

Viira, V., Löfgren, A., Mägi, S. & Wickström, J. 2001. An Early to Middle Ordovician succession of conodont faunas at Mäekalda, northern Estonia. Geological Magazine138, 699–718.
https://doi.org/10.1017/S0016756801005945

Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G. (eds). 2004. The Great Ordovician Biodiversification Event. Columbia University Press, New York, 484 pp.
https://doi.org/10.7312/webb12678

Wu, R., Calner, M., Lehnert, O., Peterffy, O. & Joachimski, M. M. 2015. Lower–Middle Ordovician δ13C chemostra­tigraphy of western Baltica (Jämtland, Sweden). Palaeoworld24, 110–122.
https://doi.org/10.1016/j.palwor.2015.01.003

Wu, R., Calner, M. & Lehnert, O. 2017. Integrated conodont biostratigraphy and carbon isotope chemostratigraphy in the Lower–Middle Ordovician of southern Sweden reveals a complete record of the MDICE. Geological Magazine154, 334–353.
https://doi.org/10.1017/S0016756816000017

Zhang, Y. & Munnecke, A. 2016. Ordovician stable carbon isotope stratigraphy in the Tarim Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology458, 154–175.
https://doi.org/10.1016/j.palaeo.2015.09.001


Back to Issue