ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Small faecal pellets in Ordovician shelly fossils from Estonia, Baltoscandia; pp. 1–19

Full article in PDF format | 10.3176/earth.2020.01

Authors
Ursula Toom, Olev Vinn, Mare Isakar, Anna Madison, Olle Hints

Abstract

Coprolites (fossil faeces) constitute a group of soft sediment trace fossils that provide useful palaeoecological and sedimentological information, but have generally low preservational potential. In this paper we report abundant occurrence and high diversity of small faecal pellets preserved inside different shelly fossils from Middle and Upper Ordovician carbonates of the Baltoscandian palaeobasin. The material contains ca 180 body fossils with faecal pellets from 40 localities, corresponding to a range of shallow-marine environments from cool-water carbonate ramp to tropical open shelf settings. Stratigraphically the finds range from the Volkhov to Pirgu regional stages (Dapingian to uppermost Katian). The pellets are elliptical or rod-shaped, 0.1–1.8 mm long and 0.08–0.75 mm in diameter, with the length/diameter ratio ranging from less than 2 to ca 6. They occur in shells of gastropods, bivalves, cephalopods, brachiopods, echinoderms and trilobites and represent two ichnospecies, Coprulus oblongus and Coprulus bacilliformis, and some intermediate forms belonging to the same ichnogenus. Additionally, two compound traces were identified: Tubularina (pellets inside small burrows with circular cross section) and Alcyonidiopsis (pellets inside ribbon-shaped burrows). The pellets were produced when the empty shells were located on the seafloor, or possibly during shallow burial in the oxic zone. The preservation of faecal pellets is due to an interaction of several factors, notably protection by the shells and rapid mineralization. The origin of trace makers remains speculative, but polychaete worms having compatible size and body plan and living representatives who produce similar faecal pellets are among the most likely groups. Possibly organisms with different feeding strategies were involved in producing the faecal pellets. Systematic examination of shelly fossils from selected localities showed that up to about half of the shells may contain pellets, which indicates great abundance and diversity of pellet-producing organisms in the Ordovician Baltoscandian basin. Our material also shows that the trace maker of Arachnostega was not related to the faecal pellets inside the shells.


References

Agarwal, P. N. 1988. A record of Bactryllium Heer from the Lower Triassic Rocks at Khrew, Kashmir Himalaya. Journal of Geological Society of India, 31, 495–498.

Aller, R. & Aller, J. 1982. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. Journal of Marine Research, 56, 905–936.
https://doi.org/10.1357/002224098321667413

Arakawa, K. Y. 1970. Scatological studies of the Bivalvia (Mollusca). Advances in Marine Biology, 8, 307–436.
https://doi.org/10.1016/S0065-2881(08)60494-0

Arakawa, K. Y. 1971. Studies on the faecal pellets of marine invertebrates (excluding molluscs). Publications of the Seto Marine Biological Laboratory, 19, 231–241.
https://doi.org/10.5134/175721

Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D. & Regnier, P. 2013. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Science Reviews, 123, 53–86.
https://doi.org/10.1016/j.earscirev.2013.02.008

Bałuk, W. & Radwański, A. 1979. Polychaete-attributable faecal pellets, Tibikoia sanctaecrucis ichnosp. n., from the Korytnica Clays (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica, 29, 339–344.

Barrande, J. 1872. Systême silurien du centre de la Bohème. Vol. I, Suppl. I. J. Barrande, Prague, 647 pp.

Benton, M. J. & Hiscock, C. 1996. Lower Silurian trace fossils and the Eocoelia community in the Tortworth Inlier, SW England. Proceedings of the Geologists Association, 107, 199–208.
https://doi.org/10.1016/S0016-7878(96)80029-0

Benton, M. J. & Trewin, N. H. 1978. Discussion and comments on Nicholson’s 1872 manuscript ‘Contributions to the study of the Errant Annelides of the older Palaeozoic rocks’. Publications of the Department of Geology and Mineralogy, University of Aberdeen, 1, 1–16.

Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M. & Uchman, A. 2006. Names for trace fossils: a uniform approach. Lethaia, 39, 265–286.
https://doi.org/10.1080/00241160600787890

Bruthansová, J. & Kraft, P. 2003. Pellets independent of or associated with Bohemian Ordovician body fossils. Acta Palaeontologica Polonica, 48, 437–445.

Buatois, L. A., Wisshak, M., Wilson, M. A. & Mángano, M. G. 2017. Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth-Science Reviews, 164, 102–181.
https://doi.org/10.1016/j.earscirev.2016.08.009

Chamberlain, C. K. 1977. Ordovician and Devonian trace fossils from Nevada. Nevada Bureau of Mines and Geology, Bulletin, 90, 1–24.

Coimbra, R., Immenhauser, A. & Olóriz, F. 2009. Matrix micrite δ13C and δ18O reveals synsedimentary marine lithification in Upper Jurassic Ammonitico Rosso limestones. Sedimentary Geology, 219, 332–348.
https://doi.org/10.1016/j.sedgeo.2009.06.002

Davis, R. A., Fraye, R. H. B. & Holland, C. H. 2001. Trilobites within nautiloid cephalopods. Lethaia, 34, 37–45.
https://doi.org/10.1080/002411601300068251

Dronov, A. & Rozhnov, S. 1997. Climatic changes in the Baltoscandian basin during the Ordovician: sedimentological and palaeontological aspects. Acta Geologica Sinica, 46, 108–113.

Dronov, A. V., Mikuláš, R. & Logvinova, M. 2002. Trace fossils and ichnofabrics across the Volkhov depositional sequence (Ordovician, Arenigian of St. Petersburg Region, Russia). Journal of the Czech Geological Society, 47, 133–146.

Eiserhardt, K.-H., Koch, L. & Eiserhardt, W. L. 2001. Revision des Ichnotaxon Tomaculum Groom, 1902. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 221, 325–358.

Elliott, G. F. 1963. Problematical microfossils from the Cretaceous and Palaeocene of the Middle East. Palaeontology, 6, 293–300.

Eriksson, M. E. & Terfelt, F. 2007. Anomalous facies and ancient faeces in the latest middle Cambrian of Sweden. Lethaia, 40, 69–84.
https://doi.org/10.1111/j.1502-3931.2006.00007.x

Eriksson, M. E., Lindgren, J., Chin, K. & Månsby, U. 2011. Coprolite morphotypes from the Upper Cretaceous of Sweden: novel views on an ancient ecosystem and implications for coprolite taphonomy. Lethaia, 44, 455–468.
https://doi.org/10.1111/j.1502-3931.2010.00257.x

Eriksson, M. E., Hints, O., Paxton, H. & Tonarová, P. 2013. Ordovician and Silurian polychaete diversity and biogeography. In Early Palaeozoic Biogeography and Palaeogeography (Harper, D. A. T. & Servais, T., eds), Geological Society, London, Memoirs, 38, 265–272.
https://doi.org/10.1144/M38.18

Flügel, E. 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Berlin, Heidelberg, 976 pp.
https://doi.org/10.1007/978-3-662-08726-8

Folk, R. L. & Robles, R. 1964. Carbonate sands of Isla Perez, Alacran Reef Complex, Yucatán. The Journal of Geology, 72, 255–292.
https://doi.org/10.1086/626986

Frič, A. 1908. Problematica Silurica: Systême silurien du centre de la Bohême. A. Frič, Prague, 28 pp., 12 pls.

Fürsich, F. T. 1974. Corallian (Upper Jurassic) trace fossils from England and Normandy. Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie), 13, 1–52.

Gaillard, C. 1978. Révision de l’ichnogenere Coprulus Richter & Richter, 1939, et description de quelques nouvelles espèces du Jurassique supérieur. Geobios, 11, 439–455.
https://doi.org/10.1016/S0016-6995(78)80079-5

Gaillard, C., Bernier, P., Gall, J. C., Gruet, Y., Barale, G., Bourseau, J. P., Buffetaut, E. & Wenz, S. 1994. Ichnofabric from the Upper Jurassic lithographic limestone of Cerin, southeast France. Palaeontology, 37, 285–304.

Gaździcki, A. 1974. Rhaetian microfacies, stratigraphy and facial development in the Tatra Mts. Acta Geologica Polonica, 21, 387–397.

García-Ramos, J. C., Mángano, M. G., Piñuela, L. Buatois, L. A. & Rodriguez-Tovar, F. J. 2014. The ichnogenus Tubotomaculum: an enigmatic pellet-filled structure from Upper Cretaceous to Miocene deep-marine deposits of southern Spain. Journal of Paleontology, 88, 1189–1198.
https://doi.org/10.1666/13-123

Gramann, F. 1966. Längsgeriefte Sediment-Stäbchen aus dem nordwestdeutschen Kimmeridge und ihre Deutung als Kotpillen mariner Invertebraten. Paläontologische Zeitschrift, 40, 262–268.
https://doi.org/10.1007/BF02988177

Groom, T. 1902. The sequence of the Cambrian and associated beds of the Malvern Hills. Quarterly Journal of the Geological Society of London, 58, 89–149.
https://doi.org/10.1144/GSL.JGS.1902.058.01-04.10

Gutiérrez-Marco, J. C. 1984. Una interesante señal de actividad biológica en el Ordovícico de los Montes de Toledo. COL−PA, 39, 17–25.

Hanken, N.-M., Uchman, A., Nielsen, J. K., Olaussen, S., Eggebø, T. & Steinsland, R. 2016. Late Ordovician trace fossils from offshore to shallow water mixed siliciclastic and carbonate facies in the Ringerike Area, Oslo Region, Norway. Ichnos, 23, 189–221.
https://doi.org/10.1080/10420940.2016.1199427

Häntzschel, W. 1962. Trace fossils and problematica. In Treatise on Invertebrate Paleontology (Moore, R. C., ed.), pp. W177–245. Geological Society of America, New York and University of Kansas Press, Lawrence.

Hargrave, B. T. 1976. The central role of invertebrate faeces in sediment decomposition. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (Anderson, J. M. & Macfadyen, A., eds), pp. 301–321. Oxford, Blackwell.

Harris, M. T., Sheehan, P. M., Ainsaar, L., Hints, L., Männik, P., Nõlvak, J. & Rubel, M. 2004. Upper Ordovician sequences of western Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 135–148.
https://doi.org/10.1016/j.palaeo.2004.02.045

Hatai, K. T., Kotaks, T. & Noda, H. 1970. Supplementary note on the faecal pellets from the early Kogota Formation, Kogota-Machi, Miyagi Prefecture, northeast Honshu, Japan. Saito Ho-on Kai Museum Research Bulletin, 39, 7–11.

Heer, O. 1853. Beschreibung der angeführten Pflanzen und Insekten. In Geologische Bemerkungen über das nördliche Vorarlberg und einige angrenzenden gegenden (Von Der Linth, E., ed.), Allgemeine Schweizer Gesellschaft für die gesamten Naturwissenschaften, Neue Denkschriften, Zürich, 13, 113–135.

Hints, O. 2000. Ordovician eunicid polychaetes of Estonia and surrounding areas: review of their distribution and diversification. Review of Palaeobotany and Palynology, 113, 41–55.
https://doi.org/10.1016/S0034-6667(00)00051-8

Hints, O. & Eriksson, M. E. 2007. Diversification and biogeography of scolecodont-bearing polychaetes in the Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 95–114.
https://doi.org/10.1016/j.palaeo.2006.02.029

Hofmann, H. J. 1972. Systematically branching burrows from the Lower Ordovician (Quebec Group) near Quebec, Canada. Paläontologische Zeitschrift, 46, 186–198.
https://doi.org/10.1007/BF02990152

Hu, S. 2005. Taphonomy and palaeoecology of the Early Cambrian Chengjiang Biota from Eastern Yunnan, China. Berliner paläobiologische Abhandlungen, 7, 1–197.

Izumi, K. 2012. Formation process of the trace fossil Phymatoderma granulata in the Lower Jurassic black shale (Posidonia Shale, southern Germany) and its paleoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 353–355, 116–122.
https://doi.org/10.1016/j.palaeo.2012.07.021

Jaanusson, V. 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia, 6, 11–34.
https://doi.org/10.1111/j.1502-3931.1973.tb00871.x

Jumars, P. A., Dorgan, K. M. & Lindsay, S. M. 2015. Diet of worms emended: an update of polychaete feeding guilds. The Annual Review of Marine Science, 7, 497–520.
https://doi.org/10.1146/annurev-marine-010814-020007

Jürgenson, E. 1958. Forms of silica in Ordovician and Silurian carbonate rocks in Soviet Estonia. Eesti NSV Teaduste Akadeemia Geoloogia Instituudi Uurimused, 2, 87–92 [in Russian, with English summary].

Kimming, J. & Strotz, L. C. 2017. Coprolites in mid-Cambrian (Series 2–3) Burgess Shale-type deposits of Nevada and Utah and their ecological implications. Bulletin of Geosciences, 92, 297–309.
https://doi.org/10.3140/bull.geosci.1667

Knaust, D. 2008. Balanoglossites Mägdefrau, 1932 from the Middle Triassic of Germany: part of a complex trace fossil probably produced by burrowing and boring polychaetes. Paläontologische Zeitschrift, 82, 347–372.
https://doi.org/10.1007/BF03184427

Knaust, D. & Dronov, A. 2013. Balanoglossites ichnofabrics from the Middle Ordovician Volkhov formation (St. Petersburg Region, Russia). Stratigraphy and Geological Correlation, 21, 265–279.
https://doi.org/10.1134/S0869593813030040

Knaust, D., Curran, H. A. & Dronov, A. V. 2012. Shallow-marine carbonates. In Trace Fossils as Indicators of Sedimentary Environments (Knaust, D. & Bromley, R. D., eds), Developments in Sedimentology, 64, 705–750.
https://doi.org/10.1016/B978-0-444-53813-0.00023-X

Kornicker, L. S. 1962. Evolutionary trends among mollusc fecal pellets. Journal of Paleontology, 36, 829–834.

Kraeuter, J. & Haven, D. S. 1970. Fecal pellets of common invertebrates of Lower York River and Lower Chesapeake Bay, Virginia. Chesapeake Science, 11, 159–173.
https://doi.org/10.2307/1351239

Kristensen, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia, 426, 1–24.
https://doi.org/10.1007/978-94-011-4148-2_1

Kröger, B. & Aubrechtová, M. 2018. Cephalopods from reef limestone of the Vasalemma Formation, northern Estonia (latest Sandbian, Upper Ordovician) and the establishment of a local warm-water fauna. Journal of Systematic Palaeontology, 16, 799–839.
https://doi.org/10.1080/14772019.2017.1347212

Kröger, B., Hints, L. & Lehnert, O. 2017. Ordovician reef and mound evolution: the Baltoscandian picture. Geological Magazine, 154, 683–706.
https://doi.org/10.1017/S0016756816000303

Kulkarni, K. G. & Panchang, R. 2015. New insights into polychaete traces and fecal pellets: another complex ichnotaxon? PLoS One, 10, 1–10.
https://doi.org/10.1371/journal.pone.0139933

Ladle, M. & Griffiths, B. S. 1980. A study on the feces of some chalk stream invertebrates. Hydrobiologia, 74, 161–171.
https://doi.org/10.1007/BF00014568

Levinton, J. S. 2017. Marine Biology: Function, Biodiversity, Ecology. Fifth Edition. Oxford University Press, New York, 530 pp.

Liu, A. G., McMahon, S., Matthews, J. J., Still, J. W. & Brasier, A. T. 2019. Petrological evidence supports the death mask model for the preservation of Ediacaran soft-bodied organisms in South Australia. Geology, 47, 215–218.
https://doi.org/10.1130/G45918.1

Mángano, M. G., Hawkes, C. D. & Caron, J.-B. 2019. Trace fossils associated with Burgess Shale non-biomineralized carapaces: bringing taphonomic and ecological controls into focus. Royal Society Open Science, 6, 172074.
https://doi.org/10.1098/rsos.172074

Männik, P. 2017. Conodont biostratigraphy of the Oandu Stage (Katian, Upper Ordovician) in NE Estonia. Estonian Journal of Earth Sciences, 66, 1–12.
https://doi.org/10.3176/earth.2017.02

Männil, R. M. 1966a. Evolution of the Baltic Basin During the Ordovician. Valgus, Tallinn, 200 pp. [in Russian, with English summary].

Männil, R. M. 1966b. O vertikal´nykh norkakh zaryvaniya v ordovikskikh izvestnyakakh Pribaltiki [On vertical burrows in the Ordovician limestones of Baltic]. In Organizm i sreda v geologicheskom proshlom [Organism and Environment in the Geological Past] (Gekker, R. F., ed.), pp. 200–207. Akademiya Nauk SSSR, Paleontologicheskij Institut, Nauka, Moskva [in Russian].

Manning, R. B. & Kumpf, H. E. 1959. Preliminary investigations of the fecal pellets of certain invertebrates of the south Florida area. Bulletin of Marine Science Gulf and Caribbean, 9, 291–309.

Martens, P. 1978. Faecal pellets. Fiches D´Identification du zooplancton, 162, 1–4.

Martin, E., Lerosey-Aubril, R. & Vannier, J. 2016. Palaeoscolecid worms from the Lower Ordovician Fezouata Lagerstatte, Morocco: palaeoecological and palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 460, 130–141.
https://doi.org/10.1016/j.palaeo.2016.04.009

Massalongo, A. B. 1856. Studii Paleontologici. Antonelli G., Verona. 53 pp.

Mayer, G. 1952. Neue Lebensspuren aus dem Unteren Hauptmuschelkalk (Trochitenkalk) von Wiesloch: Coprulus oblongus n. sp. und C. sphaeroideus n. sp. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1952, 376–379.

Mayer, G. 1955. Kotpillen als Füllmasse in Hoernesien und weitere Kotpillenvorkommen im Kraichgauer Hauptmuschelkalk. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1955, 531–535.

Mayer, G. 1958. Rhizocorallien mit Wandkörperchen. Der Aufschluß, 8, 314–316.

Metz, R. 2015. First report of the ichnofossil Alcyonidiopsis Massalongo from New Jersey: second non-marine recording. Northeastern Geoscience, 33, 12–15.

Mikuláš, R. 1991. Trace fossils from siliceous concretions in the Šárka and Dobrotivá Formations (Ordovician, central Bohemia). Časopis pro mineralogii a geologii, 36, 29–38.

Mikuláš, R. 1992. Trace fossils from the Kosov Formation of the Bohemian Upper Ordovician. Sborník geologických věd, Geologie, 32, 9–54.

Mikuláš, R. & Slavíčková, J. 2001. Trilobites and minute ovoid pellets in a burrow (Ordovician, Llanvirnian, Czech Republic). Ichnos, 8, 243–249.
https://doi.org/10.1080/10420940109380191

Mikuláš, R. & Dronov, A. V. 2005 Trace fossils. In The Sixth Baltic Stratigraphical Conference. Cambrian and Ordovician of St. Petersburg Region, Guidebook for the Pre-conference Field Trip (Dronov, A. V., Tolmacheva, T. & Raevskaya, E., eds), pp. 33–38. Saint Petersburg.

Miller, W. 2003. Paleobiology of complex trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 3–14.
https://doi.org/10.1016/S0031-0182(02)00675-2

Moore, H. B. 1931a. The systematic value of a study of molluscan faeces. Proceedings of the Malacological Society of London, 19, 281–290.

Moore, H. B. 1931b. The specific identification of faecal pellets. Journal of the Marine Biological Association of the United Kingdom, 17, 359–369.
https://doi.org/10.1017/S0025315400050888

Moore, H. B. 1939. Faecal pellets in relation to marine deposits. In Recent Marine Sediments (Trask, P. D., ed.), pp. 516–524. The American Association of Petroleum Geologists, Tulsa, Oklahoma.
https://doi.org/10.2110/pec.55.04.0516

Moore, H. B. & Kruse, P. 1956. A Review of Present Knowledge of Faecal Pellets. University of Miami Institute of Marine Science, Marine Lab. Rept., No. 13805, 25 pp.

Morata, N. & Seuthe, L. 2014. Importance of bacteria and protozooplankton for faecal pellet degradation. Oceanologia, 56, 565–581.
https://doi.org/10.5697/oc.56-3.565

Morse, J. W., Arvidson, R. S. & Luettge, A. 2007. Calcium carbonate formation and dissolution. Chemical Reviews, 107, 342–381.
https://doi.org/10.1021/cr050358j

Nestor, H. & Einasto, R. 1997. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 192–204. Estonian Academy Publishers, Tallinn.

Neto de Carvalho, C. & Farinha, C. 2006. Coprolites from Portugal: a synthesis with the report of new findings. Ichnology Newsletter, 27, 10–15.

Neto de Carvalho, C., Couto, H., Figueiredo, M. V. & Baucon, A. 2016. Microbial-related biogenic structures from the Middle Ordovician slates of Canelas (northern Portugal). Comunicações Geológica, 103(Especial 1), 23–38.

Nõlvak, J. 1997. Ordovician, Introduction. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 52–55. Estonian Academy Publishers, Tallinn.

Nõlvak, J., Hints, O. & Männik, P. 2006. Ordovician timescale in Estonia: recent developments. Proceedings of the Estonian Academy of Sciences, Geology, 55, 95–108.

Orr, P. J. 1996. The ichnofauna of the Skiddaw Group (early Ordovician) of the Lake District, England. Geological Magazine, 133, 193–216.
https://doi.org/10.1017/S0016756800008700

Palmer, T. J. & Wilson, M. A. 2004. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37, 417–427.
https://doi.org/10.1080/00241160410002135

Palmer, T. J., Hudson, J. D. & Wilson, M. A. 1988. Palaeoecological evidence for early aragonite dissolution in ancient calcite seas. Nature, 335, 809–810.
https://doi.org/10.1038/335809a0

Péneau, J. 1941. Die Anwesenheit von Tomaculum problematicum im Ordoviciums West-Frankreichs. Senckenbergiana, 23, 127–132.

Pickerill, R. K. 1980. Phanerozoic flysch trace fossil diversity – observations based on an Ordovician ichnofauna from the Aroostook–Matapedia Carbonate Belt of northern New Brunswick. Canadian Journal of Earth Sciences, 17, 1259–1270.
https://doi.org/10.1139/e80-131

Pickerill, R. K. 1989. Compaginatichnus: a new ichnogenus from Ordovician flysch of eastern Canada. Journal of Paleontology, 63, 913–919.
https://doi.org/10.1017/S0022336000036611

Pickerill, R. K. & Forbes, W. H. 1979. Ichnology of the Trenton Group in the Quebec City area. Canadian Journal of Earth Sciences, 16, 2022–2039.
https://doi.org/10.1139/e79-188

Pickerill, R. K. & Narbonne, G. M. 1995. Composite and compound ichnotaxa: a case example from the Ordovician of Quebec, eastern Canada. Ichnos, 4, 53–69.
https://doi.org/10.1080/10420949509380114

Pickerill, R. K., Fyffe, L. R. & Forbes, W. H. 1987. Late Ordovician–Early Silurian trace fossils from the Matapedia Group, Tobique River, Western New Brunswick, Canada. Maritime Sediments and Atlantic Geology, 23, 77–88.
https://doi.org/10.4138/1623

Podhalańska, T. 2007. Ichnofossils from the Ordovician mudrocks of the Pomeranian part of the Teisseyre–Tornquist Zone (NW Poland). Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 295–305.
https://doi.org/10.1016/j.palaeo.2006.06.002

Põlma, L. 1982. Comparative Lithology of Ordovician Carbonate Rocks in North and Central East Baltic. Valgus, Tallinn, 152 pp. [in Russian, with English summary].

Pryor, W. A. 1975. Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments. GSA Bulletin, 86, 1244–1254.
https://doi.org/10.1130/0016-7606(1975)86<1244:BSAAOA>2.0.CO;2

Richter, R. & Richter, E. 1939. Marken und Spuren aus allen Zeiten. III. Eine Lebens-Spur (Syncoprulus pharmaceus), gemeinsam dem rheinischen und böhmischen Ordovicium. Senckenbergiana, 21, 152–168.

Seilacher, A. 2007. Trace Fossil Analysis. Springer, Berlin, 226 pp.

Shen, C., Prett, B. R. & Xhang, X.-G. 2014. Phosphatized coprolites from the middle Cambrian (Stage 5) Duyun fauna of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 420, 104–112.
https://doi.org/10.1016/j.palaeo.2014.05.035

Shinn, E. A. 1968. Burrowing in recent lime sediments of Florida and the Bahamas. Journal of Paleontology, 42, 837–840.

Siir, S., Kallaste, T., Kiipli, T. & Hints, R. 2015. Internal stratification of two thick Ordovician bentonites of Estonia: deciphering primary magmatic, sedimentary, environmental and diagenetic signature. Estonian Journal of Earth Sciences, 64, 140–158.
https://doi.org/10.3176/earth.2015.23

Solan, M. & Wigham, B. D. 2005. Biogenic particle reworking and bacterial–invertebrate interactions in marine sediments. In Interactions Between Macro- and Microorganisms in Marine Sediments (Kristensen, E., Haese, R. & Kostka, J. E., eds), Coastal and Estuarine Studies, 60, 105–124.
https://doi.org/10.1029/CE060p0105

Stamhuis, E. J., Videler, J. J. & Wilde, P. A. W. J. de. 1998. Optimal foraging in the thalassinidean shrimp Callianassa subterranean – improving food quality by grain size selection. Journal of Experimental Marine Biology and Ecology, 228, 197–208.
https://doi.org/10.1016/S0022-0981(98)00026-4

Sun, H.-J., Babcock, L. E., Peng, J. & Zhao, Y.-L. 2014. Hyolithids and associated trace fossils from the Balang Formation (Cambrian Stage 4), Guizhou, China. Palaeoworld, 24, 55–60.
https://doi.org/10.1016/j.palwor.2014.11.004

Tarhan, L. G., Hood, A. S., Droser, M. L., Gehling, J. G. & Briggs, D. E. 2016. Exceptional preservation of soft-bodied Ediacara biota promoted by silica-rich oceans. Geology, 44, 951–954.
https://doi.org/10.1130/G38542.1

Toom, U., Vinn, O. & Hints, O. 2017. A review of ichnofossils from Estonian palaeontological collections. In 10th Baltic Stratigraphical Conference. Chęciny 12–14 September 2017. Abstracts and Field Guide. Warszawa (Żylińska, A., ed.), pp. 83–84. Faculty of Geology, University of Warsaw.

Toom, U., Vinn, O. & Hints, O. 2019a. Ordovician and Silurian ichnofossils from carbonate facies in Estonia: a collection-based review. Palaeoworld, 28, 123–144.
https://doi.org/10.1016/j.palwor.2018.07.001

Toom, U., Isakar, M., Hints, O., Madison, A. & Vinn, O. 2019b. Micro-coprolites inside Ordovician body fossils from Estonia. In 13th International Symposium on the Ordovician System: Contributions of International Symposium. Novosibirsk, Russia (July 19–22, 2019) (Obut, O. T., Sennikov, N. V. & Kipriyanova, T. P., eds), pp. 211–214. Publishing House of SB RAS, Novosibirsk.

Torsvik, T. T. & Cocks, L. R. M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society, London, Memoirs, 38, 5–24.
https://doi.org/10.1144/M38.2

Uchman, A. 1995. Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria, 15, 3–115.

Uchman, A. 1999. Ichnology of the Rhenodanubian flysch (Lower Cretaceous–Eocene) in Austria and Germany. Beringeria, 25, 65–171.

Uchman, A., Hanken, N. M. & Binns, R. 2005. Ordovician bathyal trace fossils from metasiliciclastics in Central Norway and their sedimentological and paleogeographical implications. Ichnos, 12, 105–133.
https://doi.org/10.1080/10420940590914534

Uchman, A., Rodríguez-Tovar, F. J., Machaniec, E. & Kedzierski, M. 2013. Ichnological characteristics of Late Cretaceous hemipelagic and pelagic sediments in a submarine high around the OAE-2 event: a case from the Rybie section, Polish Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 222–231.
https://doi.org/10.1016/j.palaeo.2012.12.013

van Keulen, P. & Rhebergen, F. 2017. Typology and fossil assemblage of Sandbian (Ordovician) ‘baksteenkalk’: an erratic silicified limestone of Baltic origin from the northeastern Netherlands and adjacent areas of Germany. Estonian Journal of Earth Sciences, 66, 198–219.
https://doi.org/10.3176/earth.2017.18

Vinn, O. & Toom, U. 2016. Rare arthropod traces from the Ordovician and Silurian of Estonia (Baltica). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 280, 135–141.
https://doi.org/10.1127/njgpa/2016/0570

Vinn, O., Wilson, M. A., Zatoń, M. & Toom, U. 2014. The trace fossil Arachnostega in the Ordovician of Estonia (Baltica). Palaeontologia Electronica, 17.3.40A, 1–9.
https://doi.org/10.26879/477

Vinn, O., Wilson, M. A. & Toom, U. 2015. Distribution of Conichnus and Amphorichnus in the early Paleozoic of Estonia (Baltica). Carnets de Géologie, 15, 269–278.
https://doi.org/10.4267/2042/58180

Vinn, O., Ernst, A., Toom, U. & Isakar, M. 2018. Cryptic encrusting fauna inside invertebrate fossils from the Ordovician of Estonia. Annales Societatis Geologorum Poloniae, 88, 285–290.
https://doi.org/10.14241/asgp.2018.008

Vizcaïno, D., Álvaro, J. J. & Monceret, E. 2004. Trilobites and ichnofossils from a new fossil Lagerstätte in the Lower Cambrian Pardailhan Formation, southern Montagne Noire, France. Geobios, 37, 277–286.
https://doi.org/10.1016/j.geobios.2003.08.002

Wanless, H. R., Burton, E. A. & Dravis, J. 1981. Hydrodynamics of carbonate fecal pellets. Journal of Sedimentary Petrology, 51, 27–36.
https://doi.org/10.1306/212F7BFD-2B24-11D7-8648000102C1865D

Wilson, M. A. & Palmer, T. J. 1992. Hardgrounds and hardground faunas. University of Wales, Aberystwyth, Institute of Earth Studies Publications, 9, 1–131.

Wotton, R. S. & Malmqvist, B. 2001. Feces in Aquatic Ecosystems: Feeding animals transform organic matter into fecal pellets, which sink or are transported horizontally by currents; these fluxes relocate organic matter in aquatic ecosystems. BioScience, 51, 537–544.
https://doi.org/10.1641/0006-3568(2001)051[0537:FIAE]2.0.CO;2

Wright, V. P. & Cherns, L. 2016. How far did feedback between biodiversity and early diagenesis affect the nature of Early Palaeozoic sea floors? Palaeontology, 59, 753–765.
https://doi.org/10.1111/pala.12258

Zagora, I. 1997. Tiefwasser-Lehenspuren aus dem Ordovizium der Insel Rügen (NE Deutschland). Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 203, 351–368.
https://doi.org/10.1127/njgpa/203/1997/351

Zhang, X., Bergström, J., Bromley, R. G. & Hou, X. 2007. Diminutive trace fossils in the Chengjiang Lagerstätte. Terra Nova, 19, 407–412.
https://doi.org/10.1111/j.1365-3121.2007.00765.x

Živković, S. & Bogner, D. 2006. Coprolite status of Coptocampylodon lineolatus Elliott 1963 (incertae sedis) from Middle Eocene deep-sea sediments of Istria (Croatia). Micropaleontology, 52, 371–379.
https://doi.org/10.2113/gsmicropal.52.4.371

 


Back to Issue