eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Landslide inventory in the Abava spillway valley, Latvia; pp. 165–175

Kārlis Kukemilks

This study discusses the compilation of landslide inventories and their possible application in landslide research and risk assessment. A case study was conducted in the Abava River valley (western Latvia) between the towns of Sabile and Kandava to determine the most effective methods of landslide mapping and to demonstrate the possible applications of landslide inventories there.
Landslide inventories are necessary for landslide risk zoning and landslide hazard prevention. An efficient landslide mapping is one of the first steps for creating a landslide inventory. The effectiveness of different landslide mapping approaches was compared in the real-world study area of the Abava River valley. Hillshade maps and stereoscopic aerial photographs were used to map landslides. To evaluate the accuracy of the applied landslide mapping methods, field surveys were conducted in the study area. During the field surveys, the slopes of the Abava River valley were inspected for the occurrence of landslides. During the field surveys, landslides were also classified according to their morphological expression. By comparing the results of landslide mapping through stereoscopic aerial photographs and hillshade maps with the field surveys, the most appropriate methodology for landslide identification was determined. The information containing the spatial location of landslides and their morphological characteristics reveals factors controlling landslide formation in the study area and delivers information for landslide research and risk assessment.


Āboltiņš, O. P., Mūrnieks, A. & Zelčs, V. 2011. Stop 2: The River Gauja Valley and landslides at Sigulda. In Eighth Baltic Stratigraphical Conference. Post Conference Field Excursion Guidebook (Stinkulis, Ģ. & Zelčs, V., eds), pp. 15–20. University of Latvia, Rīga.

Booth, A. M., Roering, J. J. & Perron, J. T. 2009. Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorpho­logy, 109, 132–147.

Easterbrook, D. J. 1999. Surface Processes and Landforms. 2nd edn. Prentice Hall, Upper Saddle River, New Jersey, 546 pp.

Fiorucci, F., Cardinali, M., Carlà, R., Rossi, M., Mondini, A. C., Santurri, L., Ardizzone, F. & Guzzetti, F. 2011. Seasonal landslide mapping and estimation of landslide mobili­zation rates using aerial and satellite images. Geo­morphology, 129, 59–70.

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F. & Reichenbach, P. 2008. Comparing landslide inventory maps. Geomorphology, 94, 268–289.

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M. & Chang, K.-T. 2012. Landslide inventory maps: new tools for an old problem. Earth-Science Reviews, 112, 42–66.

Hövel, H., Alberti, M. & Dikau, R. 2015. Qualitative Auswertung von Laserscandaten zur Erfassung von Massenbewegungsflächen am südlichen Ferschweiler Plateau (Südeifel). Mainzer Geowissenschaftliche Mittei­lungen, 43, 185–208.

Hutchinson, J. N. 1988. Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In Landslides: Proceedings of the 5th International Symposium on Landslides, Vol. 1 (Bonnard, C., ed.), pp. 10–35. Brukfield, Balkema, Rotterdam.

Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. 2008. Hole-filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM 90m Database. Available online: [accessed 3 March 2017].

Kohv, M., Talviste, P., Hang, T., Kalm, V. & Rosentau, A. 2009. Slope stability and landslides in proglacial varved clays of western Estonia. Geomorphology, 106, 315–323.

Kukemilks, K. & Saks, T. 2013. Landslides and gully slope erosion on the banks of the Gauja River between the towns of Sigulda and Ligatne. Estonian Journal of Earth Sciences, 63, 231–243.

Latvijas Valsts ceļi. 2014. Lietavu dēļ apgrūtināti ceļa būvdarbi pie Sabiles. Ģeologi veic izpēti [Due to rainfall construction works of a motorway in the vicinity of Sabile prohibited. Geologists are conducting a research]. Available online: lietavu-del-apgrutinati-cela-buvdarbi-pie-sabiles-geologi-veic-izpeti/ [in Latvian, accessed 10 June 2017].

Li, Z., Zhu, Q. & Gold, C. 2005. Digital Terrain Modelling. Principles and Methodology. CRC PRESS, Washington, D.C., 323 pp.

McKean, J. & Roering, J. 2004. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57, 331–351.

Mūrnieks, A. 2002. Turaidas pils stāv un stāvēs [Turaida castle will stand]. Latvijas Ģeoloģijas Vēstis, 10, 2–6.

Skels, P. & Bondars, K. 2015. Testing of landslide triggering mechanism by pore pressure inflation with back pressure shear box. In Proceedings of the 24th European Young Geotechnical Engineers Conference (EYGEC), Durham, UK (Osman, A. S. & Toll, D. G., eds), pp. 1–6. School of Engineering and Computing Sciences, Durham University, Durham. Available online: http: // Skels.pdf [accessed 3 March 2017].

Soms, J. 2006. Regularities of gully erosion network development and spatial distribution in south-eastern Latvia. Baltica, 19, 72–79.

Stumpf, A. & Kerle, N. 2011. Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment, 115, 2564–2577.

Takčidi, E. 1999. Datu bāzes ‘Urbumi’ dokumentācija [Documentation of the Database ‘Boreholes’]. State Geology Survey, Rīga.

TOPO 10K PSRS. 1979–1980. Topographic Map Mosaic of the Former USSR Armed Forces, Coordinate System SK-63, Scale 1: 10 000. Stored in the Faculty of Geography and Earth Sciences, University of Latvia.

Van Den Eeckhaut, M. & Hervás, J. 2012. State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology, 139140, 545–558.

Van Den Eeckhaut, M., Poesen, J., Verstraeten, V., Vanacker, J., Moeyersons, J., Nyssen, J. & van Beek, L. P. H. 2005. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology, 67, 351–363.

Van Den Eeckhaut, M., Poesen, J., Gullentops, F., Vande­kerckhove, L. & Hervás, J. 2011. LiDAR-based imagery in Southern Flanders. Quaternary Research, 75, 721–733.

Veinbergs, I. 1975. Formirovanie Abavsko-Slotsenskoj sistemy dolin stoka talykh lednikovykh vod [Formation of the Abava-Slocene system of glacial meltwater drainage valleys]. In Voprosy chetvertichnoj geologii [Problems of Quaternary Geology] (Danilāns, I., ed.), pp. 82–102. Zinātne, Rīga [in Russian, with English summary].

Venska, V. 1982. Sovremennye geologicheskie protsessy na territorii natsional′nogo parka Gauya [Contemporary geological processes in the Gauja National Park]. In Sovremennye ekzogennye protsessy i metody ikh issledovaniya [Contemporary Exogenous Geological Processes and Their Investigation] (Eberhards, G., ed.), pp. 139–159. Latvian State University Press, Riga [in Russian].

Zelčs, V. & Markots, A. 2004. Deglaciation history of Latvia. In Quaternary Glaciations Extent and Chronology, Part I: Europe (Ehlers, J. & Gibbard, P. L., eds), pp. 225–243. Elsevier B.V., Amsterdam.

Zelčs, V., Markots, A., Nartišs, M. & Saks, T. 2011. Pleistocene glaciations in Latvia. In Developments in Quaternary Science. Quaternary Glaciations Extent and Chronology. A Closer Look, Vol. 15 (Ehlers, J. et al., eds), pp. 221–229. Elsevier B.V., Amsterdam.

Back to Issue