eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
A new Byronia species from the Late Ordovician of Estonia; pp. 201–206
PDF | 10.3176/earth.2016.17

Olev Vinn, Kalle Kirsimäe, Luke A. Parry, Ursula Toom

A new species of a possible thecate scyphozoan Byronia jaegeri sp. nov. is described from the late Katian of Estonia. This new taxon is distinct as it lacks the longitudinal ornamentation present in other Byronia species. Phosphanullus is a phosphatic attachment disk, which has been considered to be a junior synonym of Byronia. We report qualitative energy dispersive analysis and scanning electron microscopy of the composition of B. jaegeri, demonstrating that the tube is organic in composition and has a lamellar microstructure. The compositional differences of Phosphanullus and Byronia do not support their synonymy. It is likely that Phosphanullus belongs to a closely related but distinct phosphatic group of thecate scyphozoans, due to their morphological similarity, but differing composition.


Bischoff, G. C. O. 1989. Byroniida new order from early Palaeo­­zoic strata of eastern Australia (Cnidaria, thecate scyphopolyps). Senckenbergiana Lethaea, 69, 467–521.

Dong, X. P., Cunningham, J. A., Bengtson, S., Thomas, C. W., Liu, J., Stampanoni, M. & Donoghue, P. C. 2013. Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides. Proceedings of the Royal Society B: Biological Sciences, 280, 1–8.

Ford, R. C., van Iten, H. & Clark, G. R. II. 2016. Micro­structure and composition of the periderm of conulariids. Journal of Paleontology, 90, 389–399.

Holmer, L. 2004. Byroniids. In The Great Ordovician Bio­diversification Event (Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G., eds), pp. 220–221. Columbia University Press.

Howell, B. F. 1962. Worms. In Treatise on Invertebrate Paleontology, Part W, Miscellanea (Moore, R. C., ed), pp. W144–W177. Geological Survey of America and University of Kansas Press, Lawrence.

Jaanusson, V. 1973. Aspects of carbonate sedimentation in the Ordovician of Baltoscandia. Lethaia, 6, 11–34.

Kozłowski, R. 1967. Sur certains fossiles ordoviciens à test organique. Acta Palaeontologica Polonica, 12, 99–137.

Matthew, G. F. 1899. Studies on Cambrian faunas. No. 3. Upper Cambrian fauna of Mount Stephen, British Columbia. The trilobites and worms. Transactions of the Royal Society of Canada, Section 4, 5, 39–66.

Mierzejewska, G. & Mierzejewski, P. 1979. Chitin-protein complex in the Ordovician organic microfossil. Acta Medica Polona, 20, 33–34.

Mierzejewski, P. 1986. Ultrastructure, taxonomy and affinities of some Ordovician and Silurian organic microfossils. Palaeontologia Polonica, 47, 129–220.

Müller, K. J., Nogami, Y. & Lenz, H. 1974. Phosphatische Ringe als Mikrofossilien im Altpaläozoikum. Palae­ontographica, Abt. A, 146, 79–99.

Muscente, A. D. & Xiao, S. H. 2015. New occurrences of Sphenothallus in the lower Cambrian of South China: implications for its affinities and taphonomic deminerali­zation of shelly fossils. Palaeogeography, Palaeo­climatology, Palaeoecology, 437, 141–164.

Nestor, H. & Einasto, R. 1997. Ordovician and Silurian carbonate sedimentation basin. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 192–204. Estonian Academy Publishers, Tallinn.

Öpik, A. 1930. Beiträge zur Kenntnis der- (C2-C3) Stufe in Eesti. IV. Tartu Ülikooli Geoloogia Instituudi Toimetused, 19, 1–34.

Pacheco, M. L. A. F., Galante, D., Rodrigues, F., de M. Leme, J., Bidola, P., Hagadorn, W., Stockmar, M., Herzen, J., Rudnitzki, I. D., Pfeiffer, F. & Marques, A. C. 2015. Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella. PLoS ONE, 10(3), e0114219.

Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. A. & Cocks, L. R. M. 2012. Phanero­zoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325–368.

Van Iten, H. 1991. Anatomy, pattern of occurrence, and nature of the conulariid schott. Palaeontology, 34, 939–954.

Van Iten, H. 1992a. Anatomy and phylogentic significance of the corners and midlines of the conulariid test. Palae­ontology, 35, 335–358.

Van Iten, H. 1992b. Microstructure and growth of the conulariid test: implications for conulariid affinities. Palaeontology, 35, 359–372.

Van Iten, H., Zhu, M.-Y. & Li, G.-X. 2010. Redescription of Hexaconularia He and Yang, 1986 (Lower Cambrian, South China): implications for the affinities of conulariid-like small shelly fossils. Palaeontology, 53, 191–199.

Van Iten, H., Marques, A. C., de Moraes Leme, J., Forancelli Pacheco, M. L. A. & Guimaraes Simões, M. 2014. Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic–Cambrian history. Palaeontology, 57, 677–690.

Vinn, O. & Kirsimäe, K. 2015. Alleged cnidarian Sphenothallus in the Late Ordovician of Baltica, its mineral compo­sition and microstructure. Acta Palaeontologica Polonica, 60, 1001–1008.

Wrona, R. 2004. Cambrian microfossils from glacial erratics of King George Island, Antarctica. Acta Palaeontologica Polonica, 49, 13–56.

Zhu, M. Y., van Iten, H., Cox, R. S., Zhao, Y. L. & Erdtmann, B.-D. 2000. Occurrence of Byronia Matthew and Sphenothallus Hall in the Lower Cambrian of China. Paläontologische Zeitschrift, 74, 227–238.


Back to Issue