ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Towards effective monitoring of urban stormwater for better design and management; pp. 176–199

Full article in PDF format | doi: 10.3176/earth.2016.12

Authors
Bharat Maharjan, Karin Pachel, Enn Loigu

Abstract

The lack of information due to insufficient data availability and an improper sampling method for stormwater generates constraint and uncertainty in addressing all storm events. In such conditions, it is difficult to assess actual concentrations and mass loads. This results in a backlog in decision-making for sustainable planning, design and policy formulation, e.g. retrofitting alternatives to traditional systems for reducing runoff and pollutants. It is essential to set standardized sampling and analysis procedures in order to achieve reliable and representative data. They need to be optimal and effective due to the costs and difficulties in sampling and analysis. The study reviews the effectiveness of largely best practiced sampling procedures in research papers. Likely site selection approaches, monitoring parameters and sample collection systems are compiled with their effectiveness, affordability and applicability. An optimal stormwater sampling programme is deducted and recommended for Tallinn stormwater catchment area. Moreover, the study provides an opportunity to select the suitable monitoring programme from the effective options such that it can be utilized to obtain coherent stormwater data.


References

 1. Ingvertsen, S. T., Jensen, M. B. & Magid, J. A minimum data set of water quality parameters to assess and compare treatment efficiency of stormwater facilities. Journal of Environmental Quality, 2011, 40(5), 1488–1502.
http://dx.doi.org/10.2134/jeq2010.0420

 2. Jartun, M., Ottesen, R. T., Steinnes, E. & Volden, T. Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps. Science of the Total Environment, 2008, 396(2–3), 147–163.
http://dx.doi.org/10.1016/j.scitotenv.2008.02.002

 3. Göbel, P., Dierkes, C. & Coldewey, W. G. Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology, 2007, 91(1–2), 26–42.
http://dx.doi.org/10.1016/j.jconhyd.2006.08.008

 4. Carere, M., Dulio, V., Hanke, G. & Polesello, S. Guidance for sediment and biota monitoring under the Common Implementation Strategy for the Water Framework Directive. Trends in Analytical Chemistry, 2012, 36, 15–24.
http://dx.doi.org/10.1016/j.trac.2012.03.005
http://dx.doi.org/10.1016/j.trac.2012.04.008

 5. HELCOM. HELCOM Recommendation 23/5, Reduction of Discharges from Urban areas by the Proper Management of Storm Water Systems, 2002, 4 pp.

 6. Veeseadus [Estonian Water Act]. 2011. Available from: https://www.riigiteataja.ee/akt/110032011010 [accessed 10 March 2015].

 7. EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, 2000, L327, 1–72.

 8. Roots, O. & Roose, A. Hazardous substances in the aquatic environment of Estonia. Chemosphere, 2013, 93(1), 196–200.
http://dx.doi.org/10.1016/j.chemosphere.2013.05.036

 9. Ackerman, D., Stein, E. D. & Ritter, K. J. Evaluating performance of stormwater sampling approaches using a dynamic watershed model. Environmental Monitoring and Assessment, 2011, 180(1–4), 283–302.
http://dx.doi.org/10.1007/s10661-010-1788-6

 10. Ma, J., Kang, J., Kayhanian, M. & Stenstrom, M. Sampling issues in urban runoff monitoring programs: composite versus grab. Journal of Environmental Engineering, 2009, 135(3), 118–127.
http://dx.doi.org/10.1061/(ASCE)0733-9372(2009)135:3(118)

 11. ANZECC, ARMCANZ. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Vols 1 and 2. Council AaNZEaC, Zealand; AaRMCoAaN, 2000. Available from: https:// http://www.mfe.govt.nz/ fresh-water/tools-and-guidelines/anzecc-2000-guidelines [accessed 10 November 2015].

 12. US EPA. Industrial Stormwater Monitoring and Sampling Guide Final Draft. US EPA, Washington DC, USA, 2009, 832B09003, 42 pp.

 13. GC, WWE. Urban Stormwater BMP Performance Monitoring. Geosyntec Consultants and Wright Water Engineers, 2009.

 14. Bertrand-Krajewski, J.-L., Barraud, S. & Chocat, B. Need for improved methodologies and measurements for sustainable management of urban water systems. Environ­­mental Impact Assessment Review, 2000, 20(3), 323–331.

 15. Fletcher, T. D. & Deletic, A. Statistical evaluation and optimisation of stormwater quality monitoring programmes. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 2007, 56(12), 1–9.

 16. Leecaster, M. K., Schiff, K. & Tiefenthaler, L. L. Assessment of efficient sampling designs for urban stormwater monitoring. Water Research, 2002, 36(6), 1556–1564.
http://dx.doi.org/10.1016/S0043-1354(01)00353-0

 17. Fox, D. R., Etchells, T. & Tan, K. S. Protocols for the Optimal Measurement of Nutrient Loads. A report to West Gippsland Catchment Management Authority, Australian Centre for Environmetrics, University of Melbourne, Australia, 2005.

 18. McCarthy, D. & Harmel, D. Quality assurance/quality control in stormwater sampling. Quality Assurance & Quality Control of Environmental Field Sampling, 2014, February, 98–127.

 19. Harmel, R. D., King, K. W., Haggard, B. E., Wren, D. G. & Sheridan, J. M. Practical guidance for discharge and water quality data collection on small watersheds. Transactions of the ASABE, 2006, 49(4), 937–948.
http://dx.doi.org/10.13031/2013.21745

 20. Harmel, R. D., Cooper, R. J., Slade, R. M., Haney, R. L. & Arnold, J. G. Cumulative uncertainty in measured streamflow and water quality data for small watersheds. Transactions of the ASABE, 2006, 49(3), 689–701.
http://dx.doi.org/10.13031/2013.20488

 21. Harmel, R. D., Smith, D. R., King, K. W. & Slade, R. M. Estimating storm discharge and water quality data uncertainty: a software tool for monitoring and modeling applications. Environmental Modelling & Software, 2009, 24(7), 832–842.
http://dx.doi.org/10.1016/j.envsoft.2008.12.006

 22. Jianying, Z. & Chunlong, Z. Quality assurance/quality control in surface water sampling. Quality Assurance & Quality Control of Environmental Field Sampling, 2014, February, 76–96.

 23. Keskkonnaseire seadus [Environmental Monitoring Act]. Amended on 20.01.1999. Entry into force 15.02.1999, 2011. Available from: https://www.riigiteataja.ee/ akt/13315995 [accessed 16 March 2015].

 24. Tallinna arengukava 2014–2020 [Tallinn Development Plan 2014–2020]. Adopted 13.06.2013, No. 29, 2013. Available from: https://www.riigiteataja.ee/akt/ 425062013041 [accessed 16 March 2015].

 25. Tallinna sademevee strateegia aastani 2030 [Tallinn Stormwater Strategy until 2030]. Adopted 19.06.2012, No. 18, 2012. Available from: https://www.riigiteataja.ee/ akt/409032013041 [accessed 16 March 2015].

 26. Langeveld, J. G., Liefting, H. J. & Boogaard, F. C. Uncertainties of stormwater characteristics and removal rates of stormwater treatment facilities: implications for stormwater handling. Water Research, 2012, 46(20), 6868–6880.
http://dx.doi.org/10.1016/j.watres.2012.06.001

 27. Lee, H., Swamikannu, X., Radulescu, D., Kim, S.-J. & Stenstrom, M. K. Design of stormwater monitoring programs. Water Research, 2007, 41(18), 4186–4196.
http://dx.doi.org/10.1016/j.watres.2007.05.016

 28. Langeveld, J. G., Boogaard, F., Liefting, H. J., Schilperoort, R. P., Hof, A., Nijhof, H. et al. Selection of monitoring locations for storm water quality assess­ment. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2014, 69(12), 2397–2406.

 29. Marsalek, J. Pollutant loads in urban stormwater: review of methods for planning-level estimates. JAWRA Journal of the American Water Resources Association, 1991, 27(2), 283–291.
http://dx.doi.org/10.1111/j.1752-1688.1991.tb03133.x

 30. Othmer, Jr. E. F. & Berger, B. J. Future Monitoring Strategies with Lessons Learned on Collecting Representative Samples. Storm Water Program Office of Water Programs, Sacramento State, CA, 2002, 14 pp.

 31. Liu, A., Egodawatta, P., Guan, Y. & Goonetilleke, A. Influence of rainfall and catchment characteristics on urban stormwater quality. Science of the Total Environment, 2013, 444, 255–262.
http://dx.doi.org/10.1016/j.scitotenv.2012.11.053

 32. Liu, A., Goonetilleke, A. & Egodawatta, P. Inadequacy of land use and impervious area fraction for determining urban stormwater quality. Water Resources Management, 2012, 26(8), 2259–2265.
http://dx.doi.org/10.1007/s11269-012-0014-4

 33. Kayhanian, M., Suverkropp, C., Ruby, A. & Tsay, K. Characterization and prediction of highway runoff constituent event mean concentration. Journal of Environmental Management, 2007, 85(2), 279–295.
http://dx.doi.org/10.1016/j.jenvman.2006.09.024

 34. Makepeace, D. K., Smith, D. W. & Stanley, S. J. Urban stormwater quality: summary of contaminant data. Critical Reviews in Environmental Science and Technology, 1995, 25(2), 93–139.
http://dx.doi.org/10.1080/10643389509388476

 35. Eriksson, E., Baun, A., Scholes, L., Ledin, A., Ahlman, S., Revitt, M. et al. Selected stormwater priority pollutants – a European perspective. Science of the Total Environ­ment, 2007, 383(1–3), 41–51.

 36. Gasperi, J., Zgheib, S., Cladiere, M., Rocher, V., Moilleron, R. & Chebbo, G. Priority pollutants in urban stormwater: part 2 – case of combined sewers. Water Research, 2012, 46(20), 6693–6703.
http://dx.doi.org/10.1016/j.watres.2011.09.041

 37. Zgheib, S., Moilleron, R. & Chebbo, G. Screening of priority pollutants in urban stormwater: innovative methodology. Water Pollution IX, WIT Transactions on Ecology and the Environment, 2008, 111, 235–244.
http://dx.doi.org/10.2495/WP080231

 38. Zgheib, S., Moilleron, R. & Chebbo, G. Priority pollutants in urban stormwater: part 1 – case of separate storm sewers. Water Research, 2012, 46(20), 6683–6692.
http://dx.doi.org/10.1016/j.watres.2011.12.012

 39. Paschke, A. Consideration of the physicochemical properties of sample matrices – an important step in sampling and sample preparation. Trends in Analytical Chemistry, 2003, 22(2), 78–89.
http://dx.doi.org/10.1016/S0165-9936(03)00206-1

 40. Eriksson, E., Baun, A., Mikkelsen, P. S. & Ledin, A. Chemical hazard identification and assessment tool for evaluation of stormwater priority pollutants. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2005, 51(2), 47–55.

 41. Madrid, Y. & Zayas, Z. P. Water sampling: traditional methods and new approaches in water sampling strategy. Trends in Analytical Chemistry, 2007, 26(4), 293–299.
http://dx.doi.org/10.1016/j.trac.2007.01.002

 42. Kegley, S., Hill, B., Orme, S. & Choi, A. PAN Pesticide Database, Pesticide Action Network. 2014. Available from: http://www.pesticideinfo.org/ [accessed 10 February 2015].

 43. Thomson, N. R., McBean, E. A., Snodgrass, W. & Monstrenko, I. B. Highway stormwater runoff quality: development of surrogate parameter relationships. Water, Air, & Soil Pollution, 1997, 94(3–4), 307–347.
http://dx.doi.org/10.1023/A:1026403519915
http://dx.doi.org/10.1007/BF02406066

 44. Grayson, R. B., Finlayson, B. L., Gippel, C. J. & Hart, B. T. The potential of field turbidity measurements for the computation of total phosphorus and suspended solids loads. Journal of Environmental Management, 1996, 47(3), 257–267.
http://dx.doi.org/10.1006/jema.1996.0051

 45. Miguntanna, N. S., Egodawatta, P., Kokot, S. & Goonetilleke, A. Determination of a set of surrogate parameters to assess urban stormwater quality. The Science of the Total Environment, 2010, 408(24), 6251–6259.
http://dx.doi.org/10.1016/j.scitotenv.2010.09.015

 46. Settle, S., Goonetilleke, A. & Ayoko, G. Determination of surrogate indicators for phosphorus and solids in urban stormwater: application of multivariate data analysis techniques. Water, Air, & Soil Pollution, 2007, 182(1–4), 149–161.
http://dx.doi.org/10.1007/s11270-006-9328-2

 47. Zhao, J. W., Shan, B. Q. & Yin, C. Q. Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area. Journal of Environmental Sciences (China), 2007, 19(4), 464–468.
http://dx.doi.org/10.1016/S1001-0742(07)60077-1

 48. Zeng, X. & Rasmussen, T. C. Multivariate statistical characterization of water quality in Lake Lanier, Georgia, USA. Journal of Environmental Quality, 2005, 34(6), 1980–1991.
http://dx.doi.org/10.2134/jeq2004.0337

 49. Fogle, A. W., Taraba, J. L. & Dinger, J. S. Mass load estimation errors utilizing grab sampling strategies in a karst watershed. JAWRA Journal of the American Water Resources Association, 2003, 39(6), 1361–1372.
http://dx.doi.org/10.1111/j.1752-1688.2003.tb04423.x

 50. HELCOM. Guidelines for the Compilation of Water­borne Pollution Load to the Baltic Sea (PLC-Water). 2006, p. 30.

 51. Novak, C. E. WRD Data Reports Preparation Guide. 1985, Contract No. 85-480, 333 pp.

 52. Brakensiek, D. L., Rawls, W. J., Osborn, H. B. & United, S. Field Manual for Research in Agricultural Hydrology. Department of Agriculture, Science and Education Administration, Washington, D.C., 1979, ix, 547 pp.

 53. Maidment, D. R. Handbook of Hydrology. McGraw-Hill, NY, USA, 1993, 1424 pp.

 54. Buchanan, T. J. & Somers, W. P. Stage Measurement at Gaging Stations: Techniques of Water-Resources Investigations. Book 3, Ch. A7. United States Department of the Interior, Geological Survey, 1968, 28 pp. Available from: http://pubs.usgs.gov/twri/twri3a7/ [accessed 10 November 2015].

 55. Buchanan, T. J. & Somers, W. P. Discharge Measure­ments at Gaging Stations: Techniques of Water-Resources Investigations. Book 3, Ch. A8, United States Depart­ment of the Interior, Geological Survey, 1969, 65 pp. Available from: http://pubs.usgs.gov/twri/twri3a8/ [accessed 10 November 2015].

 56. Sauer, V. B. & Turnipseed, D. P. Stage Measurement at Gaging Stations: U.S. Geological Survey Techniques and Methods. Book 3, Ch. A7, US Geological Survey, Washington DC, USA, 2010, 45 pp. Available from: http://pubs.usgs.gov/tm/tm3-a7/ [accessed 13 August 2015].

 57. Kennedy, E. J. Discharge Ratings at Gaging Stations: U.S. Geological Survey Techniques of Water-Resources Investigations. Book 3, Ch. A10, US Geological Survey, Washington DC, USA, 1984, 59 pp. Available from: http://pubs.usgs.gov/twri/twri3-a10/ [accessed 25 July 2015].

 58. Carter, R. W. & Davidian, J. Discharge Ratings at Gaging Stations: Techniques of Water-Resources Investigations. Book 3, Ch. A6, US Geological Survey, Washington DC, USA, 1968, 13 pp. Available from: http://pubs.usgs.gov/twri/twri3-a6/ [accessed 20 October 2015].

 59. Slade, R. General Methods, Information, and Sources for Collecting and Analyzing Water-Resources Data. CD-ROM Copyright 2004 Raymond M. Slade. 2004.

 60. Sauer, V. B. & Meyer, R. W. Determination of Error in Individual Discharge Measurements: U.S. Geological Survey Open-File Report 92–144. 1992, 21 pp. Available from: http://pubs.usgs.gov/of/1992/ofr92-144/ [accessed 18 July 2015].

 61. McIntyre, N. & Marshall, M. Field verification of bed-mounted ADV meters. In Proceedings of the ICE – Water Management. 2008, 161(4), 199–206.
http://dx.doi.org/10.1680/wama.2008.161.4.199

 62. Nord, G., Gallart, F., Gratiot, N., Soler, M., Reid, I., Vachtman, D. et al. Applicability of acoustic Doppler devices for flow velocity measurements and discharge estimation in flows with sediment transport. Journal of Hydrology, 2014, 509, 504–518.
http://dx.doi.org/10.1016/j.jhydrol.2013.11.020

 63. USEPA. Urban Stormwater BMP Performance Monitoring: A Guidance Manual for Meeting the National Stormwater BMP Database Requirements. Report No. EPA-821-B-02-001, 2002, 216 pp.

 64. Ramsey, M. H. Sampling as a source of measurement uncertainty: techniques for quantification and comparison with analytical sources. Journal of Analytical Atomic Spectrometry, 1998, 13(2), 97–104.
http://dx.doi.org/10.1039/a706815h

 65. Ging, P. B. Water-Quality Assessment of South-Central Texas: Comparison of Water Quality in Surface-Water Samples Collected Manually and by Automated Samplers. US Department of the Interior, US Geological Survey, 1999, 6 pp.

 66. Martin, G. R., Smoot, J. L. & White, K. D. A comparison of surface-grab and cross sectionally integrated stream-water-quality sampling methods. Water Environment Research, 1992, 64(7), 866–876.
http://dx.doi.org/10.2175/WER.64.7.4

 67. Rode, M. & Suhr, U. Uncertainties in selected river water quality data. Hydrology and Earth System Sciences Discussions, 2007, 11(2), 863–874.
http://dx.doi.org/10.5194/hess-11-863-2007

 68. APHA. Standard Methods for Examination of Water and Wastewater. American Public Health Association (APHA), Washington, DC, 1998.

 69. Roesner, L. A. & Kidner, E. M. Improved protocol for classification and analysis of stormwater-borne solids. Proceedings of the Water Environment Federation, 2007, 2007(13), 5539–5566.
http://dx.doi.org/10.2175/193864707787969324

 70. Khan, S., Lau, S., Kayhanian, M. & Stenstrom, M. Oil and grease measurement in Highway Runoff – sampling time and event mean concentrations. Journal of Environ­mental Engineering, 2006, 132(3), 415–422.

 71. Harmel, R. D., Slade, R. M., Jr. & Haney, R. L. Impact of sampling techniques on measured stormwater quality data for small streams. Journal of Environmental Quality, 2010, 39(5), 1734–1742.
http://dx.doi.org/10.2134/jeq2009.0498

 72. McGuire, P. E., Daniel, T. C., Stoffel, D. & Andraski, B. Sample intake position and loading rates from nonpoint source pollution. Environmental Management, 1980, 4(1), 73–77.
http://dx.doi.org/10.1007/BF01866222

 73. Selbig, W. R., Cox, A. & Bannerman, R. T. Verification of a depth-integrated sample arm as a means to reduce solids stratification bias in urban stormwater sampling. Journal of Environmental Monitoring, 2012, 14(4), 1138–1144.
http://dx.doi.org/10.1039/c2em10999a

 74. McCarthy, D. T., Deletic, A., Mitchell, V. G., Fletcher, T. D. & Diaper, C. Uncertainties in stormwater E. coli levels. Water Research, 2008, 42(6–7), 1812–1824.
http://dx.doi.org/10.1016/j.watres.2007.11.009

 75. McCarthy, D. T., Bach, P. & Deletic, A. Conducting a Microbial Budget – a Literature Review. Melbourne Water, Melbourne, Australia, 2009, 74 pp.

 76. Taylor, G. D., Fletcher, T. D., Wong, T. H. F., Breen, P. F. & Duncan, H. P. Nitrogen composition in urban runoff – implications for stormwater management. Water Research, 2005, 39(10), 1982–1989.
http://dx.doi.org/10.1016/j.watres.2005.03.022

 77. McCarthy, D. T., Lewis, J. & Bratieres, K. Effective monitoring and assessment of contaminants impacting the mid to lower Yarra catchments: a temporal scale assessment; Towards water sensitive cities and citizens. In Proceedings of the 6th International Water Sensitive Urban Design Conference (WSUD09) and Hydropolis. Australian Water Association, 2009, 432–440.

 78. Janke, B., Finlay, J., Hobbie, S., Baker, L., Sterner, R., Nidzgorski, D. et al. Contrasting influences of stormflow and baseflow pathways on nitrogen and phosphorus export from an urban watershed. Biogeochemistry, 2014, 121(1), 209–228.
http://dx.doi.org/10.1007/s10533-013-9926-1

 79. Nicolau, R., Lucas, Y., Merdy, P. & Raynaud, M. Base flow and stormwater net fluxes of carbon and trace metals to the Mediterranean Sea by an urbanized small river. Water Research, 2012, 46(20), 6625–6637.
http://dx.doi.org/10.1016/j.watres.2012.01.031

 80. Pitt, R., Maestre, A. & Morquecho, R. The National Stormwater Quality Database (NSQD, version 1.1). Department of Civil and Environmental Engineering, University of Alabama, Tuscaloosa, AL 35487. 2004, 36 pp. Available from: http://www.cityofsavage.com/images/ Departments/Engineering/NationalStormwaterDatabase.pdf [accessed 20 July 2015].

 81. Liu, A., Egodawatta, P. & Goonetilleke, A. Variability of input parameters related to pollutants build-up in stormwater quality modelling. In Proceedings of 34th IAHR World Congress (Valentine, E. M., ed.). Qld: Engineers Australia, Brisbane, 2011, 2647–2654.

 82. Harmel, R. D., King, K. W., Wolfe, J. E. & Torbert, H. A. Minimum Flow Considerations for Automated Storm Sampling on Small Watersheds. Texas Academy of Science, San Angelo, TX, ETATS-UNIS, 2002, 12 pp.

 83. Miller, P., Engel, B. & Mohtar, R. Sampling theory and mass load estimation from watershed water quality data. In 2000 ASAE Annual International Meeting, Milwaukee, Wisconsin, USA, 9–12 July 2000. American Society of Agricultural Engineers, 2000, 1–13.

 84. King, K. W. & Harmel, R. D. Considerations in selecting a water quality sampling strategy. Transactions of the ASAE, 2003, 46(1), 63–73.

 85. Harmel, R. D. & King, K. W. Uncertainty in measured sediment and nutrient flux in runoff from small agri­cultural watersheds. Transactions of the ASAE, 2005, 48(5), 1713–1721.
http://dx.doi.org/10.13031/2013.20005

 86. Stone, K. C., Hunt, P. G., Novak, J. M., Johnson, M. H. & Watts, D. W. Flow-proportional, time-composited, and grab sample estimation of nitrogen export from an eastern coastal plain watershed. Transactions of the ASAE, 2000, 43(2), 281–290.
http://dx.doi.org/10.13031/2013.2703

 87. Butler, D. & Davies, J. Urban Drainage: CRC Press, 2004, 542 pp.

 88. Egodawatta, P., Thomas, E. & Goonetilleke, A. Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall. Water Research, 2007, 41(13), 3025–3031.
http://dx.doi.org/10.1016/j.watres.2007.03.037

 89. Liu, A., Goonetilleke, A. & Egodawatta, P. Taxonomy for rainfall events based on pollutant wash-off potential in urban areas. Ecological Engineering, 2012, 47, 110–114.
http://dx.doi.org/10.1016/j.ecoleng.2012.06.008

 90. Haan, C. T. Statistical Methods in Hydrology. 2002, 496 pp.

 91. Harmel, R. D., King, K. W. & Slade, R. M. Automated storm water sampling on small watersheds. Applied Engineering in Agriculture, 2003, 19(6), 667–674.
http://dx.doi.org/10.13031/2013.15662

 92. King, K. W., Harmel, R. D. & Fausey, N. R. Develop­ment and sensitivity of a method to select time-and flow-paced storm event sampling intervals for headwater streams. Journal of Soil and Water Conservation, 2005, 60(6), 323–330.

 93. Miller, P., Mohtar, R. & Engel, B. Water quality monitoring strategies and their effects on mass load calculation. Transactions of the ASABE, 2007, 50(3), 817–829.
http://dx.doi.org/10.13031/2013.23147

 94. Abtew, W. & Powell, B. Water quality sampling schemes for variable flow canals at remote sites. JAWRA Journal of the American Water Resources Association, 2004, 40(5), 1197–1204.
http://dx.doi.org/10.1111/j.1752-1688.2004.tb01579.x

 95. Bach, P. M., McCarthy, D. T. & Deletic, A. Redefining the stormwater first flush phenomenon. Water Research, 2010, 44(8), 2487–2498.
http://dx.doi.org/10.1016/j.watres.2010.01.022

 96. Duncan, H. A Review of Urban Stormwater Quality Processes. Cooperative Research Centre for Catchment Hydrology Melbourne, Australia, 1995, 38 pp.

 97. Sansalone, J. J. & Cristina, C. M. First flush concepts for suspended and dissolved solids in small impervious watersheds. Journal of Environmental Engineering, 2004, 130(11), 1301–1314.
http://dx.doi.org/10.1061/(ASCE)0733-9372(2004)130:11(1301)

 98. Han, Y., Lau, S. L., Kayhanian, M. & Stenstrom, M. K. Characteristics of highway stormwater runoff. Water Environment Research: A Research Publication of the Water Environment Federation, 2006, 78(12), 2377–2388.

 99. McCarthy, D. T. A traditional first flush assessment of E. coli in urban stormwater runoff. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2009, 60(11), 2749–2757.

100. Shih, G., Abtew, W. & Obeysekera, J. Accuracy of nutrient runoff load calculations using time-composite sampling. Transactions of the ASAE, 1994, 37(2), 419–429.
http://dx.doi.org/10.13031/2013.28093

101. Tiefenthaler, L. L. & Schiff, K. C. Temporal variability patterns of stormwater concentrations in a large urban watershed. Proceedings of the Water Environment Federation, 2005, 2005(3), 375–387.

102. Belt, K. T., Stack, W. P., Pouyat, R. V., Burgess, K., Groffman, P. M., Frost, W. M. et al. Ultra-urban baseflow and stormflow concentrations and fluxes in a watershed undergoing restoration (WS263). Proceedings of the Water Environment Federation, 2012, 2012(5), 262–276.
http://dx.doi.org/10.2175/193864712811698989

103. Francey, M., Fletcher, T. D. , Deletic, A. & Duncan, H. New insights into the quality of urban storm water in South Eastern Australia. Journal of Environmental Engineering, 2010, 136(4), 381–390.
http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000038

104. Schiff, K. Review of existing stormwater monitoring programs for estimating bight-wide mass emissions from urban runoff. In Southern California Coastal Water Research Project Annual Report 1995–96 (Weisberg, S., Francisco, C. & Hallock, D., eds). Westminster, California, 1997, 44–55.

105. Pandit, A. & Gopalakrishnan, G. Estimation of annual pollutant loads under wet-weather conditions. Journal of Hydrologic Engineering, 1997, 2(4), 211–218.
http://dx.doi.org/10.1061/(ASCE)1084-0699(1997)2:4(211)

106. Ward, R. C., Loftis, J. C. & McBride, G. B. Design of Water Quality Monitoring Systems. John Wiley and Sons, Inc., Hoboken, New Jersey, 1990, 235 pp.

107. EPA N. Contaminated Sites: Sampling Design Guidelines. NSW Environment Protection Agency New South Wales, Australia, 1995, 35 pp.

108. McCarthy, D. T., Hathaway, J. M., Hunt, W. F. & Deletic, A. Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff. Water Research, 2012, 46(20), 6661–6670.
http://dx.doi.org/10.1016/j.watres.2012.01.006

109. Sliva, L. & Williams, D. D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Research, 2001, 35(14), 3462–3472.
http://dx.doi.org/10.1016/S0043-1354(01)00062-8

110. May, D. & Sivakumar, M. Optimum number of storms required to derive site mean concentrations at urban catchments. Urban Water Journal, 2009, 6(2), 107–113.
http://dx.doi.org/10.1080/15730620802685081

111Maniquiz-Redillas, M. C., Mercado, J. M. R. & Kim, L.-H. Determination of the number of storm events representing the pollutant mean concentration in urban runoff. Desalination and Water Treatment, 2013, 51(19–21), 4002–4009.
http://dx.doi.org/10.1080/19443994.2013.781002

112. Mourad, M., Bertrand-Krajewski. J. L. & Chebbo, G. Stormwater quality models: sensitivity to calibration data. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2005, 52(5), 61–68.

113. Smoley, C. NPDES Storm Water Sampling Guidance Manual. US EPA Office of Water, 1993, 178 pp.

114. Mourad, M., Bertrand-Krajewski, J. L. & Chebbo, G. Calibration and validation of multiple regression models for stormwater quality prediction: data partitioning, effect of dataset size and characteristics. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2005, 52(3), 45–52.

115. Bertrand-Krajewski, J.-L. Stormwater pollutant loads modelling: epistemological aspects and case studies on the influence of field data sets on calibration and verification. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2007, 55(4), 1–17.

116. Duncan, H. Urban Storm Water Quality: A Statistical Overview. Cooperative Research Centre for Catchment Hydrology, Melbourne, 1999, 124 pp.

117. Mourad, M., Bertrand-Krajewski, J. L. & Chebbo, G. Sensitivity to experimental data of pollutant site mean concentration in stormwater runoff. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2005, 51(2), 155–162.

118. Koivusalo, H., Setälä, H., Sillanpää, N. & Valtanen, M. Urban hydrological monitoring in Finland: past experiences, recent results, and future directions. In Lahti as an Urban Laboratory for Sustainable Environment (Mäkelä, I. & Palvi, T., eds). Juvenes Print – Suomen Yliopistopaino Oy, 2014, 70–84.

119. Valtanen, M., Sillanpää, N. & Setälä, H. Effects of land use intensity on stormwater runoff and its temporal occurrence in cold climates. Hydrological Processes, 2014, 28(4), 2639–2650.
http://dx.doi.org/10.1002/hyp.9819

120. Sillanpää, N. Effects of Suburban Development on Runoff Generation and Water Quality. Doctoral Thesis, Aalto University, Finland, 2013, 240 pp.

121. Karlavičienė, V., Švedienė, S., Marčiulionienė, D. E., Randerson, P., Rimeika, M. & Hogland, W. The impact of storm water runoff on a small urban stream. Journal of Soils and Sediments, 2008, 9(1), 6–12.
http://dx.doi.org/10.1007/s11368-008-0038-9

122. Mancinelli, E., Baltrėnaitė, E., Baltrėnas, P, Paliulis, D., Passerini, G. & Almås, Å. R. Trace metal concentration and speciation in storm water runoff on impervious surfaces. Journal of Environmental Engineering and Landscape Management, 2015, 23(1), 15–27.
http://dx.doi.org/10.3846/16486897.2014.936441

123Milukaitė, A., Šakalys, J., Kvietkus, K., Vosylienė, M. Z., Kazlauskienė, N. & Karlavičienė, V. Physico-chemical and ecotoxicological characterizations of urban storm water runoff. Polish Journal of Environmental Studies, 2010, 19(6), 1279–1285.

124. Valtanen, M., Sillanpää, N. & Setälä, H. The effects of urbanization on runoff pollutant concentrations, loadings and their seasonal patterns under cold climate. Water, Air, & Soil Pollution, 2014, 225(6), 1–16.
http://dx.doi.org/10.1007/s11270-014-1977-y

125. EELIS. Estonian Nature Information System. 2015. Available from: https://sso.keskkonnainfo.ee [accessed 16 March 2015].

126. Maharjan, B., Pachel, K. & Loigu, E. Urban stormwater quality and quantity in the city of Tallinn. European Scientific Journal, 2013, 9(21), 305–314.

127. Reovee puhastamise ning heit- ja sademevee suublasse juhtimise kohta esitatavad nõuded, heit- ja sademevee reostusnäitajate piirmäärad ning nende nõuete täitmise kontrollimise meetmed [Wastewater Treatment and Requirements of Wastewater and Stormwater Discharges into the Receiving Water Bodies; Wastewater and Stormwater Pollutant Thresholds; and Compliance Verification Measures]. Adopted 29.11.2012, No. 99, 2013. Available from: https://www.riigiteataja.ee/akt/ 113062013013 [accessed 16 March 2015].

128. Prioriteetsete ainete ja prioriteetsete ohtlike ainete nimistu, prioriteetsete ainete, prioriteetsete ohtlike ainete ja teatavate muude saasteainete keskkonna kvaliteedi piirväärtused ning nende kohaldamise meetodid, vesi­konnaspetsiifiliste saasteainete keskkonna kvaliteedi piirväärtused, ainete jälgimisnimekiri [List of Priority Substances and Priority Hazardous Substances; Environ­mental Quality Limits of Priority Substances, Priority Hazardous Substances and Certain Other Pollutants and Methods for their Application, Environmental Quality Limits of Water-Specific Pollutants, the List of Monitored Substances]. Adopted 30.12.2015, No. 77, 2015. Available from: https://www.riigiteataja.ee/akt/ 108012016010 [accessed 9 May 2016].

129. Nõuded suplusveele ja supelrannale [Requirements to Bathing Water and Beach]. Regulation of the Govern­ment of Estonia No. 74. Adopted 03.04.2008, 2008. Available from: https://www.riigiteataja.ee/akt/ 129082011006 [accessed 10 November 2015].

130. EU. Directive 2006/7/EC of the European Parliament and the Council of 15 February 2006 concerning the management of bathing water quality and repealing. Directive 76/160/EEC2006. Official Journal of the European Union, 2006, L64, 37–51. Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri= CELEX%3A32006L0007 [accessed 25 August 2015].


Back to Issue