eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Landslides and gully slope erosion on the banks of the Gauja River between the towns of Sigulda and Līgatne; pp. 231–243

Full article in PDF format | doi: 10.3176/earth.2013.17

Kārlis Kukemilks, Tomas Saks


This study examines contemporary and past slope erosion processes in the Gauja River valley and adjoining area between the towns of Sigulda and Līgatne. In the field survey landslides and gullies were mapped. Spatial landslide and gully data were correlated with the landslide- and gully-related features (local relief, slope lithology, slope form, slope angle and density of gullies). A novel approach was applied to establish the relationships between slope processes and factors influencing them. This approach uses correlation between raster values of landslide-related factors in specific slope sections and the number of slope processes in these sections to determine the areas prone to slope processes and their causes. As a result, the susceptibility index of the landslides and gullies was mapped and compared with landslides and gullies from field observations. The map of landslide susceptibility was more compatible with observations from field studies than the map of gully susceptibility. A more developed gully network in the northern part of the study area can be explained by smaller resistance of sediments to erosion, while in the southern part of the study area shallow dolomite deposits are limiting gully erosion. The distributed sediment volumes in separate zones were calculated to compare erosion rates on both banks of the Gauja River. Higher erosion rates were obtained for the left bank. Large cross sections of tributary valleys and large gullies, poorly developed erosional network, weak correlations with slope angle and lithology indicate that the erosion network was formed in a short time interval, possibly during the Late-Glacial period in paraglacial environments.


Āboltiņš, O. 1971. Razvitie doliny reki Gauya [Development of the Gauja River Valley]. Zinātne, Riga, 104 pp. [in Russian].

Āboltiņš, O. 1995. Gaujas senleja [Gauja Ancient Valley]. In Latvijas daba 2. sēj. [Nature of Latvia, 2. Band] (Kavacis, G., ed.), p. 101. Latvijas Enciklopēdija, Rīga [in Latvian].

Āboltiņš, O. & Eniņš, G. 1979. Gaujas senieleja [Gauja Ancient Valley]. Liesma, Rīga, 134 pp. [in Latvian].

Āboltiņš, O. P., Mūrnieks, A. & Zelčs, V. 2011. Stop 2: The River Gauja Valley and landslides at Sigulda. In Eighth Baltic Stratigraphical Conference. Post Conference Field Excursion Guidebook (Stinkulis, Ģ. & Zelčs, V., eds), pp. 15–20. University of Latvia, Rīga.

Ašmanis, K. 1937. Gauja. Sērija ‘Jaunais zinātnieks’ [River Gauja. Series ‘New Scientist’]. Valters un Rapa, Rīga, 75 pp. [in Latvian].

Ayalew, L. & Yamagishi, H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15–31.

Ayalew, L., Yamagishi, H., Marui, H. & Kanno, T. 2005. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81, 432–445.

Ballantine, C. K. 2002. Paraglacial geomorphology. Quaternary Science Reviews, 21, 1935–2017.

Chen, Z., Wang, J., Wang, Y., Yin, J. H. & Haberfield, C. 2001. A three-dimensional slope stability analysis method using the upper bound theorem, Part I: theory and methods. International Journal of Rock Mechanics & Mining Sciences, 38, 369–378.

Conover, W. J. 1980. Practical Nonparametric Statistics. John Wiley & Sons, New York, 493 pp.

Delle, J. 1932. Venta un Abava. Sērija ‘Jaunais zinātnieks’ [River Venta and River Abava. Series ‘New Scientist’]. Valters un Rapa, Rīga, 74 pp. [in Latvian].

Easterbrook, D. J. 1999. Surface Processes and Landforms. 2nd edn. Prentice-Hall, Upper Saddle River, New Jersey, 546 pp.

Eberhards, G. 1972. Stroenie i razvitie dolin bassejna reki Daugava [Morphology and Development of the Daugava River Basin]. Zinātne, Riga, 131 pp. [in Russian].

Gustafson, E. J. & Parker, G. R. 1994. Using an index of habitat patch proximity for landscape design. Landscape and Urban Planning, 29, 117–130.

Guzzetti, F., Carrara, A., Cardinali, M. & Reichenbach, P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology, 31, 181–216.

Hutchinson, J. N. 1988. Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In Landslides: Proceeding of the 5th International Symposium on Landslides, Vol. 1 (Bonnard, C., ed.), pp. 10–35. Brukfield: Balkema, Rotterdam.

Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. 2008. Hole-filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM 90m Database. Available online: [accessed 10 Nov. 2011].

Jumiķis, A. R. 1964. Mechanics of Soils: Fundamentals for Advanced Study. Van Nostrand, Princeton, 483 pp.

Kalniņa, A. 1995. Climate. In Latvijas daba 2. sēj. [Latvian Nature, 2. Band] (Kavacs, G., ed.), pp. 247–251. Latvijas Enciklopēdija, Rīga [in Latvian].

Kellerer-Pirklbauer, A., Proske, H. & Strasser, V. 2009. Para­glacial slope adjustment since the end of the Last Glacial Maximum and its long-lasting effects on secondary mass wasting processes: Hauser Kaibling, Austria. Geo­morphology, 120, 65–76.

Kohv, M., Talviste, P., Hang, T., Kalm, V. & Rosentau, A. 2009. Slope stability and landslides in proglacial varved clays of western Estonia. Geomorphology, 106, 315–323.

Lee, S., Ryu, J. H., Won, J. S. & Park, H. J. 2004. Determin­ation and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71, 289–302.

McCarthy, D. F. 2002. Essentials of Soil Mechanics and Foundations. 6th edn. Prentice Hall, Upper Saddle River, Columbus, 788 pp.

Panin, A. V., Fuzeina, J. N. & Belyaev, R. V. 2009. Long-term development of Holocene and Pleistocene gullies in the Protva River basin, Central Russia. Geomorphology, 108, 71–91.

Poesen, J., Nachtergaele, J., Verstraeten, G. & Valentin, C. 2003. Gully erosion and environmental change: importance and research needs. Catena, 50, 91–133.

Saltupe, B. 1982. Osobennosti morfologii stroeniya i formirovaniya prolyuviya krupnogo konusa vynosa v drevnej doline reki Gauya [Morphological characteristics and development of the old gully fan in the Gauja River valley]. In Sovremennye ekzogennye protsessy i metody ikh issledovaniya [Contemporary Exogenous Geological Processes and Their Investigation] (Eberhards, G., ed.), pp. 115–125. Latvian State University Press, Rīga [in Russian].

Schmidt, J. & Dikau, R. 2004. Modeling historical climate variability and slope stability. Geomorphology, 60, 433–447.

Sleinis, I., Ašmanis, K., Delle, N., Siliņš, J. & Lamsters, V. 1933. Daugava. Sērija ‘Jaunais zinātnieks’ [River Daugava. Series ‘New Scientist’]. Valters un Rapa, Rīga, 107 pp. [in Latvian].

Sobol, I. 1994. A Primer for the Monte Carlo Method. CRC Press, Boca Raton, 107 pp.

Soms, J. 2006. Regularities of gully erosion network development and spatial distribution in south-eastern Latvia. Baltica, 19, 72–79.

Takčidi, E. 1999. Datu bāzes ‘Urbumi’ dokumentācija [Documentation of the Database ‘Boreholes’]. State Geology Survey, Rīga.

Valentin, C., Poesen, J. & Li, Y. 2005. Gully erosion: impacts, factors and control. Catena, 63, 132–153.

Van Den Eeckhaut, M. & Hervás, J. 2012. State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology, 139–140, 545–558.

Van Den Eeckhaut, M., Poesen, J., Verstraeten, V., Vanacker, J., Moeyersons, J., Nyssen, J. & van Beek, L. P. H. 2005. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology, 67, 351–363.

Van der Linden, P. & Mitchell, J. F. B. 2009. Climate Change and Its Impacts at Seasonal, Decadal and Centennial Timescales. Met Office Hadley Centre. Available online: Ensembles_final_report_Nov09.pdf [accessed 15 Dec. 2011].

Veinbergs, I. 1975. Formirovanie Abavsko-Slotsenskoj sistemy dolin stoka talykh lednikovykh vod [Formation of the Abava-Slocene system of glacial meltwater drainage valleys]. In Voprosy chetvertichnoj geologii [Problems of Quaternary Geology] (Danilāns, I., ed.), pp. 82–102. Zinātne, Rīga [in Russian, with English summary].

Venska, V. 1982. Sovremennye geologicheskie protsessy na territorii natsional¢nogo parka Gauya [Contemporary geological processes in the Gauja National Park]. In Sovremennye ekzogennye protsessy i metody ikh issledovaniya [Contemporary Exogenous Geological Processes and Their Investigation] (Eberhards, G., ed.), pp. 139–159. Latvian State University Press, Rīga [in Russian].

Xie, M., Tetsuro, E., Qiu, C., Jia, L. Mowen, X., Esaki, T., Cheng, Q. & Lin, J. 2007. Spatial three-dimensional landslide susceptibility mapping tool and its applications. Earth Science Frontiers, 14, 73–84.

Zelčs, V. & Markots, A. 2004. Deglaciation history of Latvia. In Quaternary Glaciations – Extent and Chronology, Part I: Europe (Ehlers, J. & Gibbard, P. L., eds), pp. 225–243. Elsevier B.V., Amsterdam.

Zelčs, V., Markots, A., Nartišs, M. & Saks, T. 2011. Pleistocene glaciations in Latvia. In Developments in Quaternary Science. Quaternary Glaciations – Extent and Chronology. A Closer Look, Vol. 15 (Ehlers, J. et al., eds), pp. 221–229. Elsevier B.V., Amsterdam.

Back to Issue