eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Prediction of change in wetland habitats by groundwater: case study in Northeast Lithuania; pp. 57–72

Full article in PDF format | 10.3176/earth.2013.06

Julius Taminskas, Rimantas Petrošius, Rasa Šimanauskienė, Jonas Satkūnas, Rita Linkevičienė


The main aim of this article is to assess changes in important waterfowl habitats – protected wetlands situated in the impact zone of proposed dolomite mining. The changes in the waterfowl habitats are evaluated according to changes in the area of sub-wetlands that compose the principal basis of the waterfowl habitat. The sub-wetlands were selected according to vegetation structure of Lake Čedasas and its riparian zone (northern Lithuania). The open water, hydrophyte, helophyte, open grass and mire scrub sub-wetlands were distinguished.
According to the simulation results, the decrease in groundwater level between 6 and 7 m in the dolomite quarry would not produce a decline of the water level of Lake Čedasas and groundwater level in the riparian zone, but the lowering of the ground­water level in the dolomite quarry and predicted climate change will produce a decline of groundwater level of as much as 10 cm in the surroundings of the investigated lake. The water level of Lake Čedasas would also decrease by about 10 cm. Even these minor water level changes will influence the ecosystems of Lake Čedasas. The following changes are predicted: open water territory will diminish by about 25%, the area covered by hydrophytes will increase by about 15% and the area covered by helophytes will decrease by about 17%, the area of the open grass sub-wetland will decline by about 5%, whereas the area of the mire scrub sub-wetland will increase even by as much as 28%.
The research results showed that the selected mathematical model could be employed to produce a useful simulation of surface water resources and understand the wetland habitats response to disturbances in the water regime.


Acreman, M. C., Blake, J. R., Booker, D. J., Harding, R. J., Reynard, N., Mountford, J. O. & Stratford, C. J. 2009. A simple framework for evaluating regional wetland ecohydrological response to climate change with case studies from Great Britain, Ecohydrology, 2, 1–17.

Beklioglu, M., Altinayar, G. & Tan, C. O. 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie, 166, 535–556.

Blindow, I., Andersson, G., Hargeby, A. & Johansson, S. 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology, 30, 159–167.

Brinson, M. M. 1993. A Hydrogeomorphic Classification for Wetlands. Technical Report WRP-DE-4, U.S. Army Engineer Waterways Experiment Station, Vicksbug, MS, 103 pp.

Burton, M. & Burton, R. 2002. Crake. In International Wildlife Encyclopedia, 3rd edition, pp. 582–583. Marshall Cavendish Corp., Tarrytown, NY.

Casanova, M. T. & Brock, M. A. 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147, 237–250.

Chow-Fraser, P. 2005. Ecosystem response to changes in water level of Lake Ontario marshes: lessons from the restoration of Cootes Paradise Marsh. Hydrobiologia, 539, 189–204.

Connor, K. J. & Gabor, S. 2006. Breeding waterbird wetland habitat availability and response to water-level management in Saint John River floodplain wetlands, New Brunswick. Hydrobiologia, 567, 169–181.

Convention on Wetlands of International Importance Especially as Waterfowl Habitat (the ‘Ramsar Convention’). 1971. Ramsar Iran. texts-convention-on/main/ramsar/1-31-5E20671_4000_0__ [accessed 02.02.2011].

Coops, H. & Havens, K. E. 2005. Role of water-level fluctuations in lakes and wetlands – introduction. Hydrobiologia, 539, 169.

Coops, H., Beklioglu, M. & Crisman, T. L. 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia, 506, 23–27.

Cowardin, L. M., Carter, V., Golet, F. C. & LaRoe, E. T. 1979. Classification of Wetlands and Deepwater Habitats of the United States. U. S. Department of the Interior, Fish and Wildlife Service, Washington, D.C., 131 pp.

Cuthbert, L. L. 1954. A nesting study of black tern in Michigan. Auk, 71, 36–63.

Desgranges, J. L., Ingram, J., Drolet, B., Morin, J., Savage, C. & Borcard, D. 2006. Modeling wetland bird response to water level changes in the Lake Ontario–St. Lawrence River hydrosystem. Environmental Monitoring and Assessment, 113(1–3), 329–365.

Detenbeck, N. E., Batterman, S. L., Brady, V. J., Brazner, J. C., Snarski, V. M., Taylor, D. K., Thompson, J. A. & Arthur, J. W. 2000. A test of watershed classification systems for ecological risk assessment. Environmental Toxicology and Chemistry, 19, 1174–1181.

Diersh, H.-J. 2002. WASY Software FEFLOW. Finite Element Subsurface Flow and Transport Simulation System: Reference Manual. WASY Institute for Water Resources Planning and Systems Research Ltd. Berlin, 294 pp.

Dunn, E. H. 1979. Nesting biology and development of young in Ontario black terns. Canadian Field Naturalist, 93, 276–281.

[EC] European Council. 2000. Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for the Community Action in the Field of Water Policy. October 23, 2000, 72 pp.

Environmental Impact Assessment Report of the Proposed Cedasai Dolomite Mining in Rokiškis District. 2008. G. Juozapavičius individual company ‘Magma’.

Gailiušis, B., Jablonskis, J. & Kovalenkovienė, M. 2001. Lithuanian Rivers: Hydrography and Discharge. LEI, Kaunas. 790 pp. [in Lithuanian].

Gasiūnienė, V. & Gasiūnas, B. 1973. Poiski mestorozhdenij dolomitov v Pakruojskom, Birzhaiskom i Rokishkskom rajonakh Litovskoj SSR i predvaritel¢naya razvedka mestorozhdeniya Chedasai [Investigations of Dolomite Mines in Lithuania (Pakruojis, Biržai and Kupiškis Districts) and Preparatory Prospect of Cedasai Mine]. Lithuanian Geological Survey, Vilnius, 720 pp. [in Russian].

Grossman, D. H., Faber-Langendoen, D., Weakley, A. S., Anderson, M., Bourgeron, P., Crawford, R., Goodin, K., Landaal, S., Metzler, K., Patterson, K. D., Pyne, M., Reid, M. & Sneddon, L. 1998. International Classification of Ecological Communities: Terrestrial Vegetation of the United States, Volume I, The National Vegetation Classification System: Development, Status, and Applications. The Nature Conservancy, Arlington, VA, 126 pp.

Hake, M., Dahlgren, T., Ahlund, M., Lindberg, P. & Eriksson, M. O. 2005. The impact of water level fluctuation on the breeding success of the Black-throated Diver Gavia arctica in south-west Sweden. Ornis Fennica, 82, 1–12.

Hickey, J. M. & Malecki, R. A. 1997. Nest site selection of the black tern in western New York. Colonial Water Birds, 20, 582–595.

Hudon, C., Gagnon, P., Amyot, J. P., Létourneau, G., Jean, M., Plante, C., Rioux, D. & Deschênes, M. 2005. Historical changes in herbaceous wetland distribution induced by hydrological conditions in Lake Saint-Pierre (St. Lawrence River, Quebec, Canada). Hydrobiologia, 539, 205–224.

Information Sheet on Ramsar Wetlands (RIS). 2009. Ramsar Classification System for Wetland Type. [accessed 11.05.2011].

Juodkazis, V. 1979. Hydrogeology Foundations of the Baltic Region. Mokslas, Vilnius, 142 pp. [in Lithuanian].

Kovarova, M. & Pokorny, J. 2010. Comparison of long-term monitoring of temperature and precipitation between wetland and other ecosystems. Ecohydrology, 3, 445–456.

Leira, M. & Cantonati, M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia, 613, 171–184.

Mazzocchi, I. M., Hickey, J. M. & Miller, R. L. 1997. Productivity and nesting habitat characteristics of the Black Tern in Northern New York. Colonial Waterbirds, 20, 596–603.

Naugle, D. E., Higgins, K. F., Johnson, R. R. & Nusser, S. M. 2000. Local and landscape-level factors influencing Black Tern suitability. Journal of Wildlife Management, 64, 253–260.

Paillisson, J. M. & Marion, L. 2006. Can small water level fluctuations affect the biomass of Nymphaea alba in large lakes? Aquatic Botany, 84, 259–266.

Report of the Detailed Geological Prospect of Cedasai Dolomite Mine in Rokiškis District. 2007. G. Juozapavičius individual company ‘Magma’, Vilnius, 111 pp. [in Lithuanian].

Riis, T. & Hawes, I. 2002. Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquatic Botany, 74, 133–148.

Schmieder, K. 2004. European lake shores in danger – concepts for a sustainable development. Limnologica, 34(1–2), 3–14.

Van Geest, G. J., Wolters, H., Roozen, F. C. J. M., Coops, H., Roijackers, M. M., Buijse, A. D. & Scheffer, M. 2005. Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia, 539, 239–248.

Wilcox, D. A. & Xie, Y. 2007. Predicting wetland plant community responses to proposed water-level-regulation plans for Lake Ontario: GIS-based modeling. Journal of Great Lakes Research, 33, 751–773.[751:PWPCRT]2.0.CO;2


Back to Issue