eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
The LiDAR-based topo-hydrological modelling of the Nigula mire, SW Estonia; pp. 232–248
PDF | doi: 10.3176/earth.2011.4.04

Meelis Leivits, Elve Lode

There was no big influence of the used cell scales and algorithms on the mean topographical properties of the Nigula mire digital elevation models (DEMs). The DEMs, generated using the Triangulated Irregular Network and Inverse Distance Weighted algorithms, revealed the closest mire surface properties from all used generation algorithms. The subtracted MAX–MIN DEMs layer revealed a well visible net of ditches and possible plant cover pattern differentiated in vertical scale. In the Nigula mire 58% of the mire surface basins have S–SW orientation, followed by the levelled and less fractionated N–NE basin region (23% coverage), and the most fractionated but with steeper sloping W-orientated basin region (8% coverage).


Allikvee, H. & Ilomets, M. 1995. Sood ja nende areng [Mires and their development]. In Eesti Loodus [Estonian Nature] (Raukas, A., ed.), pp. 327–346. Valgus, Eesti Entsüklopeediakirjastus, Tallinn [in Estonian].

Anderson, E. S., Thompson, J. A., Crouse, D. A. & Austin, R. E. 2006. Horizon resolution and data density effects on remotely sensed LIDAR-Based DEM. Geoderma, 132, 406–415.

Anderson, K., Bennie, J. & Wetherelt, A. 2010. Laser scanning of fine scale pattern along a hydrological gradient in a peatland ecosystem. Landscape Ecology, 2010, 25, 477–492.

[EC] European Communities. 2003. Guidance Document No. 12 2003. Horizontal Guidance on the Role of Wetlands in the Water Framework Directive. Office for Official Publications of the European Communities.

Eggelsmann, R., Heathwaite, A. L., Grosse-Braukmann, G., Küster, E., Naucke, W., Schuch, M. & Schweickle, V. 1993. 4. Physical processes and properties of mires. In Mires. Process, Exploitation and Conservation (Heathwaite, A. L. & Göttlich, Kh., eds), pp. 171–262. Wiley, New York.

ESRI 2007. Working with ArcGIS Spatial Analyst. United States of America.

Furnans, J. & Olivera, F. 2000. Chapter 4. Catchments and Watersheds. In ArcGIS Hydro Data Model. Draft Data Model and Manuscript (Maidment, D. R., ed.). GIS in Water Resources Consortium. ESRI & CRWR chapter4.pdf [accessed 4 May 2011].

Galkina, E. A. 1946. Bolotnye landshafty i printsipy ikh klassifikatsii [Mire landscapes and principles of their classification]. Sbornik Nauchnykh Rabot Botanicheskogo Instituta Imeni V. L. Komarova, AN SSSR, 139–156 [in Russian].

Gessler, P. E., Chadwick, O. A., Chamran, F., Althouse, L. D. & Holmes, K. W. 2000. Modeling soil-landscape and ecosystem properties using terrain attributes. Soil Science Society America Journal, 64, 2046–2056.

Glaser, P. H. 2002. C. A. Weber’s benchmark treatise on the Augstumal Raised Bog: reflections on its significance and impact on peatland ecology. In C. A. Weber and the Raised Bog of Augstumal (Couwenberg, J. & Joosten, H., eds). Grif & K, 278 pp.

Haile, A. T. 2005. Integrating Hydrodynamic Models and High Resolution DEM (LIDAR) for Flood Modelling. Thesis of International Institute For Geo-Information Science and Earth Observation Enschede, The Netherlands, 75 pp.

Holden, J. 2005. Peatland hydrology and carbon release: why small-scale process matters. Philosophical Transactions of the Royal Society A, 363, 2891–2913.

Ingram, H. A. P. 1983. Hydrology. In Mires: Swamp, Bog, Fen, and Moor: General Studies (Gore, A. J. P., ed.), Ecosystems of the World, 4A, 67–158. Elsevier, Amsterdam.

Ivanov, K. E. 1981. Water Movement in Mirelands. Academic Press, London, 276 pp.

Karmu, L. 1966. Nigula Riikliku Looduskaitseala füüsilis-geograafiline ülevaade [Physico-geographical Overview of the Nigula State Nature Reserve]. Unpublished graduation thesis, University of Tartu, Tartu, 110 pp [in Estonian].

Kim, H. S., Arrowsmith, J. R., Crosby, C. J., Jaeger-Frank, E., Nandigam, V., Memon, A., Conner, J., Baden, S. B. & Baru, C. 2006. An efficient implementation of a local binning algorithm for digital elevation model generation of LiDAR/ALSM Datasets. EOS: Transactions of the American Geophysical Union, 87, 52, Fall Meet. Suppl., Abstract G53C-0921.

Kolla, E. 1982. Peaksid piiramisrõngas [Besieged mire areas]. Eesti Loodus, 11, 712–719 [in Estonian].

Krause, S. & Bronstert, A. 2005. An advanced approach for catchment delineation and water balance modelling within wetlands and floodplains. Advances in Geosciences, 5, 1–5.

Liu, X. 2008. Airbone LiDAR for DEM generation: some critical issues. Progress in Physical Geography, 32, 31–49.

Liu, X., Peterson, J. & Zhang, Z. 2005. High-resolution DEM generated from LiDAR data for water resource management. In Proceedings of International Congress on Modelling and Simulation ‘MODSIM05’, 12–15 December 2005, Melbourne, Australia, pp. 1402–1408.

Liu, X., Zhang, Z., Peterson, J. & Chandra, S. 2007. The effect of LiDAR data density on DEM accuracy. In Proceedings of International Congress on Modelling and Simulation (MODSIM07), Christchurch, New Zealand, pp. 1363–1369.

Lode, E. 1999. Wetland restoration: a survey of options for restoring peatlands. Studia Forestalia Suecica, Swedish University of Agricultural Sciences, Faculty of Forestry, Uppsala, Sweden, 30 pp.

Lode, E., Roosaare, J. & Pensa, M. 2011. Chapter 26: Typo­logical up-scaling of wooded peatlands. In Forest Management and the Water Cycle. An Ecosystem-Based Approach. (26) (Bredemeier, M., Cohen, S., Godbold, D. L., Lode, E., Pichler, V. & Schleppi, P., eds), Ecological Studies, 212, 471–496. Springer.

Loopmann, A. 1970. Nigula raba. Nigula Riiklik Loodus­kaitseala [Nigula Mire. Nigula State Nature Reserve]. Tallinn, 36 pp. [in Estonian].

Loopmann, A., Pirrus, R. & Ilomets, M. 1988. Nigula Riiklik Looduskaitseala. In Eesti Sood [Estonian Mires]. (Valk, U., ed.), pp. 227–233. Valgus, Tallinn [in Estonian].

Masing, V. 1988. 2.4.3. Eesti soode liigitus [Classification of Estonian Mires]. In Eesti Sood [Estonian Mires]. (Valk, U., ed.), pp. 69–76. Valgus, Tallinn [in Estonian].

Masing, V. 1998. Multilevel Approach in Mire Mapping, Research, and Classification. Contribution to the IMCG Classification Workshop, March 25–29, 1998, Greisfswald, 6 pp.

Moen, A. 2002. Mires and peatlands in Norway: status, distribution, and nature conservation. In Third International Symposium on the Biology of Sphagnum. Uppsala–Trondheim, August 2002: Excursion Guide (Thingsgaard, K. & Flatberg, K. I., eds), pp. 41–60. Norges teknisk-naturvitenskaplige universitet, Vitenskapsmuseet, Trondheim.

Murphy, P. N. C., Ogilvie, J., Meng, F.-R. & Arp, P. 2008. Stream network modeling using lidar and photo­grammetric digital elevation models: a comparison and filed verification. Hydrological Processes, 22, 1747–1754.

Nastavlenie… 1972. Nastavlenie gidrometeorologicheskim stantsiyam i postam [Directions for Hydrometeorological Stations and Posts]. Vypusk 8. Glavnoe Upravlenie Gidrometeorologicheskoj Sluzhby pri Sovete Ministrov SSSR. Gidrometeoizdat, 296 pp. [in Russian].

Pirrus, R. 1963. History of the development of the Nigula raised bog. ENSV TA Geoloogia Instituudi Uurimused, XII, 163–173 [in Russian].

Price, J. S. & Maloney, D. A. 1994. Hydrology of a patterned Bo-Fen complex in Southeastern Labrador, Canada. Nordic Hydrology, 25, 313–330.

Puura, V., Raukas, A. & Kink, H. 1990. Vee Seisundi Kompleksne Ökoloogiline Hinnang Kaitsealadel [Complex Ecological Assessment of Water State in Protected Areas]. Eesti TA Geoloogia Instituut. Tallinn, 45 pp. [in Estonian].

Raukas, A. & Kink, H. 1993/94. Veeseire kaitsealadel (1978–1992) [Water Monitoring in Protected Areas (1978–1992)]. Nigula RLKA. Contract Work No. 7, Eesti TA Geoloogia Instituut, Tallinn, 48 pp. [in Estonian].

Rydin, H. & Jeglum, J. 2006. (With contribution by Hooijer, A., Clarkson, B. R., Clarkson, B. D., Mauquoy, D. & Bennet, K. D). The Biology of Peatlands. Oxford University Press, 343 pp.

Thompson, J. A., Bell, J. C. & Butler, C. A. 2001. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modelling. Geoderma, 100, 67–89.

Back to Issue