eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

A modified Ekman layer model; pp. 123–129

Full article in PDF format | doi: 10.3176/earth.2011.2.06

Jaak Heinloo, Aleksander Toompuu

A modification of the Ekman layer that is able to systematically account for the effects of curvature of the velocity fluctuation streamlines is developed, using the description of turbulent motions. These effects are accounted for through the average vector product of the velocity fluctuations and the local curvature vector of their streamlines at each flow field point. It is shown that this approach enables quantifying the impact of several phenomena (such as the Stokes drift or the incessant generation of vortices with a prevailing orientation of rotation, intrinsic to surface-driven geophysical flows) on the formation of the Ekman layer. The outcome of the suggested modification is compared with the relevant data measured in the Drake Passage.

Chereskin, T. K. 1995. Direct evidence for an Ekman balance in the California Current. Journal of Geophysical Research, 100, 18261-18269.

Chereskin, T. K. & Price, J. F. 2001. Ekman transport and pumping. In Encyclopedia of Ocean Sciences (Steele, J., Thorpe, S. & Turekian, K., eds), pp. 809-815. Academic Press.

Coleman, G. N., Ferziger, J. H. & Spalart, P. R. 1990. A numerical study of the turbulent Ekman layer. Journal of Fluid Mechanics, 213, 313-348.

Cushman-Roisin, B. 1994. Introduction to Geophysical Fluid Dynamics. Prentice Hall, 320 pp.

Davis, R., deSzoeke, R., Halpern, D. & Niiler, P. 1981. Variability in the upper ocean during MILE. Part 1: The heat and momentum balances. Deep-Sea Research, 28A, 1427-1451.

Ekman, V. W. 1905. On the influence of the Earth’s rotation on ocean currents. Arkiv för Matematik, Astronomi och Fysik, 2, 1-53.

Heinloo, J. 2004. The formulation of turbulence mechanics. Physics Review E, 69, 056317.

Huang, N. E. 1979. On surface drift currents in the ocean. Journal of Fluid Mechanics, 91, 191-208.

Lenn, Y.-D. & Chereskin, T. K. 2009. Observations of Ekman currents in the Southern Ocean. Journal of Physical Oceanography, 39, 768-779.

Madsen, O. S. 1977. A realistic model of the wind-induced Ekman boundary layer. Journal of Physical Oceanography, 7, 248-255.

Phillips, O. M. 1977. Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.

Price, J. F. & Sundermeyer, M. A. 1999. Stratified Ekman layers. Journal of Geophysical Research, 104(C9), 20467-20494.

Price, J. F., Weller, R. A. & Pinkel, R. 1986. Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. Journal of Geophysical Research, 91, 8411-8427.

Price, J. F., Weller, R. A. & Schudlich, R. R. 1987. Wind-driven ocean currents and Ekman transport. Science, 238, 1534-1538.

Richman, J. G., deSzoeke, R. A. & Davis, R. E. 1987. Measure­ments of near-surface shear in the ocean. Journal of Geophysical Research, 92, 2851-2858.

Schudlich, R. R. & Price, J. F. 1998. Observations of seasonal variation in the Ekman layer. Journal of Physical Oceanography, 28, 1187-1204.

Weller, R. A. 1981. Observations of the velocity response to wind forcing in the upper ocean. Journal of Geophysical Research, 86, 1969-1977.

Weller, R. A., Rudnick, D. L., Eriksen, C. C., Polzin, K. L., Oakey, N. S., Toole, J. W., Schmitt, R. W. & Pollard, R. T. 1991. Forced ocean response during the Frontal Air–Sea Interaction Experiment. Journal of Geophysical Research, 96, 8611-8638.

Wijffels, S., Firing, E. & Bryden, H. L. 1994. Direct observations of the Ekman balance at 10° N in the Pacific. Journal of Physical Oceanography, 24, 1666-1679.

Zikanov, O., Slinn, D. N. & Dhanak, M. R. 2003. Large-eddy simulations of the wind-induced turbulent Ekman layer. Journal of Fluid Mechanics, 495, 343-368.
Back to Issue